0

I've been at this one for a while:

A random variable $X$ follows the distribution $$f_X(x) = \begin{cases} Cx^2&,\quad -2\leq x \leq 1\\0&,\quad \text{Otherwise}\end{cases}$$and $Y\triangleq X^2$.

Find E[Y] and Var[Y].

I calculated C = 1/3.

I've tried $\int_b^a yf(y) dy$ for E[Y] and a similar formula using $y^2$ instead of $y$. The integrals were executed piecewise.

I could use some help, as all of my attempts (variations on the above two strategies) have been dead wrong. The similar question on the board does not appear to address the calculation of these variables.

Ryan
  • 169

2 Answers2

0

Hint

Since $\int_{-2}^1 f_X(x)dx=1$ we have$$C={1\over 3}$$also $$\Pr\{Y<y\}{=\Pr\{X^2<y\}\\=\Pr\{-\sqrt y<X<\sqrt y\}\\=\begin{cases}0&,\quad y<0\\\int_{-\sqrt y}^{\sqrt y}{x^2\over 3}dx&,\quad 0<y<1\\\int_{-\sqrt y}^{1}{x^2\over 3}dx&,\quad 1<y<4\\1&,\quad y>4\end{cases}\\=\begin{cases}0&,\quad y<0\\{2\over 9}y^{3\over 2}&,\quad 0<y<1\\{1+y^{3\over 2}\over 9}&,\quad 1<y<4\\1&,\quad y>4\end{cases}}$$therefore$$f_Y(y){={d\over dy}\Pr\{Y<y\}\\=\begin{cases}0&,\quad y<0\\{\sqrt y\over 3}&,\quad 0<y<1\\{\sqrt y\over 6}&,\quad 1<y<4\\0&,\quad y>4\end{cases}}$$

Mostafa Ayaz
  • 33,056
0

Use: $\mathsf E(Y)=\mathsf E(X^2)$, the "Law of the Unconscious Statistician" and $\mathsf {Var}(Y)=\mathsf E(X^4)-\mathsf E^2(X^2)$

$$\begin{align}\mathsf E(Y)&=\int_{-2}^1 x^2\cdot\frac {x^2}3~\mathrm d x\\[3ex]\mathsf{Var}(Y) &= \int_{-2}^1 x^4\cdot\frac {x^2}3~\mathrm d x-\mathsf E^2(Y)\end{align}$$

Graham Kemp
  • 133,231