Suppose your subspace $V$ is the column space of the $m \times n$ matrix $M$, where $M$ has rank $n < m$. Choose any subset $S$ of $\{1,\ldots, m\}$ of cardinality $n-1$, and consider the $(n-1) \times n$ submatrix $M_S$ of $M$ consisting of the rows enumerated in $S$. If
$y$ is a nonzero vector in the null space of $M_S$, then $M y$ is a nonzero member of $V$ with zeros in the positions given by $S$. Do this for $m$ randomly chosen subsets $S$ and and you will probably get enough such vectors to span $V$.
For example, I tried the random $7 \times 4$ matrix
$$ M = \left[ \begin {array}{cccc} -6&2&3&9\\ 0&5&-1&2
\\ 1&-2&-1&7\\ 8&1&3&-2
\\ 7&-4&7&-8\\ -1&-1&-6&9
\\ -6&-4&-6&-6\end {array} \right]
$$
Using subsets $[2, 3, 7], [4, 5, 7], [3, 5, 6], [3, 5, 7]$ I got the vectors consisting of the columns of
$$\left[ \begin {array}{cccc} {\frac {780}{19}}&{\frac {3}{26}}&-{
\frac {289}{28}}&{\frac {681}{13}}\\ 0&-{\frac {80}{
13}}&{\frac {471}{14}}&-{\frac {311}{26}}\\ 0&{
\frac {151}{13}}&0&0\\ -{\frac {468}{19}}&0&{\frac {
615}{14}}&-{\frac {755}{26}}\\ -{\frac {311}{19}}&0&0
&0\\ -4&{\frac {170}{13}}&0&-{\frac {415}{26}}
\\ 0&0&-{\frac {415}{7}}&0\end {array} \right]
$$
Since that matrix has rank $4$, these columns span $V$.