This thread is about a year old, but has no responses, so I've added one.
claim:
$\tau_0= \text{trace}\big(A^2B^{-1}\big) \leq \text{trace}\big(ABAB^{-2}\big)=\tau_1$
for $\text{n x n}$ HPD $A,B$ with equality iff $BA=AB$
note:
$\tau_0=\Big\Vert B^\frac{-1}{2}A\Big \Vert_F^2\gt 0$
$\tau_1=\Big\Vert B^\frac{1}{2}A B^{-1}\Big \Vert_F^2\gt 0$
The proof proceeds (i) by applying Polar Decomposition, then (ii) Cauchy-Schwarz, and finally (iii) checking the equality conditions
(i) applying Polar Decomposition to $B^{-1}A $
$AB^{-1}=PU^*\longleftarrow B^{-1}A = UP\longrightarrow A=BUP$
$\tau_0= \text{trace}\big(A^2B^{-1}\big)=\text{trace}\big(AB^{-1}A\big) = \text{trace}\big(\underbrace{B^{-1}A}A\big)=\text{trace}\big(UPA\big)=\text{trace}\big(UPBUP\big)$
$\tau_1 = \text{trace}\big(ABAB^{-2}\big)= \text{trace}\big(\underbrace{B^{-1}A}B\underbrace{AB^{-1}}\big)=\text{trace}\big(UPBPU^*\big)=\text{trace}\big(PBP\big)$
(ii) applying Cauchy-Schwarz
$\tau_0^2$
$=\Big\vert\text{trace}\big(UPBUP\big)\Big\vert^2$
$=\Big\vert\text{trace}\big(UPB^\frac{1}{2}B^\frac{1}{2}UP\big)\Big\vert^2$
$=\Big\vert\text{trace}\big((B^\frac{1}{2}PU^*)^*(B^\frac{1}{2}UP)\big)\Big\vert^2$
$\leq\text{trace}\big( UPBPU^*\big)\cdot \text{trace}\big(PU^*BUP\big)$
$=\text{trace}\big( PBP\big)\cdot \text{trace}\big(PU^*BUP\big)$
$=\tau_1\cdot \text{trace}\big(PU^*\underbrace{BUP}\big)$
$=\tau_1\cdot \text{trace}\big(\underbrace{PU^*}A\big)$
$=\tau_1\cdot \text{trace}\big(AB^{-1}A\big)$
$=\tau_1\cdot\tau_0$
thus
$\tau_0^2\leq \tau_1\cdot\tau_0 \longrightarrow \tau_0\leq \tau_1$
(iii) equality conditions
By Cauchy-Schwarz, the upper bound is met with equality iff
$B^\frac{1}{2}AB^{-1} =B^\frac{1}{2}\underbrace{PU^*}=\alpha\cdot B^\frac{1}{2}\underbrace{UP} = \alpha\cdot B^\frac{1}{2}B^{-1}A = \alpha\cdot B^\frac{-1}{2}A$
checking the trace:
$0\lt\text{trace}\big(B^\frac{-1}{4}AB^\frac{-1}{4}\big) =\text{trace}\big(B^\frac{1}{2}AB^{-1}\big)=\alpha\cdot\text{trace}\big( B^\frac{-1}{2}A\big)=\alpha\cdot\text{trace}\big( B^\frac{-1}{4}AB^\frac{-1}{4}\big)$
which implies $\alpha = 1$
Thus there is equality iff
$B^\frac{1}{2}AB^{-1} =B^\frac{-1}{2}A$
multiplying on the left by $B^\frac{1}{2}$ and on the right by $B$, this reads:
we have equality iff $BA =AB$