I am having some trouble with the following problem from Brualdi's Introductory Combinatorics (Chapter 14 Exercise 47).
The nine squares of a $3\times3$ chessboard are to be colored red and blue. The chessboard is free to rotate but cannot be flipped over. Determine the generating function for the number of non-equivalent colorings and the total number of non-equivalent colorings.
I think the problem arises from a generally poor understanding of some the material in the chapter this problem comes from , but also because the solution to the second part of the question given in the back of the book does not match the answer given in this previous question.
My book's solution is
The cycle index of the group of permutations is
$P_G(z_1,z_2,\dots,z_{10}) = \frac{z_1^{10}+2z_1z_4^2+z_1z_2^4}{4}$
Hence the number of nonequivalent colorings is $P_G(2,2,\dots,2) = \frac{2^{10}+2^4+2^5}{4}=2^8+2^3+2^2$
while the solution provided in the question linked above is given as
$\frac{2^9+4\cdot 2^3 + 2 \cdot 2^5 + 4 \cdot 2^3}{4} = 160$
Unfortunately, these two solutions do not coincide. Which one is correct??? I am confused about why my books' solution has 10 variables in its generating function on the left hand side, or why there is a 10 in the exponent of $z_1$ on the right hand side.
I am also unsure of how to apply the counting theorem when the symmetry group is smaller in order than the set we are trying to color. For instance it seems like our symmetry group should be $C_4$ but how do we apply this to the 9 squares of our chessboard?