I don't understand why $$\displaystyle \sum_{k=1}^n \dfrac{n}{n^2+kn+k^2} < \lim_{n\to \infty}\sum_{k=1}^n \dfrac{n}{n^2+kn+k^2}$$
whereas
$$\displaystyle \sum_{k=0}^{n-1} \dfrac{n}{n^2+kn+k^2} > \lim_{n\to \infty}\sum_{k=0}^{n-1} \dfrac{n}{n^2+kn+k^2} $$
I know that $$\lim_{n\to \infty}\sum_{k=1}^{n} \dfrac{n}{n^2+kn+k^2}=\dfrac{\pi}{3\sqrt{3}}$$ $$\lim_{n\to \infty}\sum_{k=0}^{n-1} \dfrac{n}{n^2+kn+k^2}=\dfrac{\pi}{3\sqrt{3}}$$
I saw somewhere on the internet that $$\displaystyle \dfrac{1}{n}\sum_{k=0}^{n-1} f\left(\dfrac{k}{n}\right) > \int_0^1 f(x)dx > \dfrac{1}{n}\sum_{k=1}^{n} f\left(\dfrac{k}{n}\right)$$ Why is this true?