If X is a binomial random variable, how do you find $E(X(X - 1)(X - 2))$?

Here's my approach:
$E(X(X - 1)(X - 2)) = E(X^3 - 3X^2 + 2X)$
$E(X) = np, Var(X) = np(1 - p)$
$Var(X) = E(X^2) - (E(X))^2$
$E(X^2) = np(1 - p) + (np)^2$
So, $E(X^3 - 3X^2 + 2X) = E(X^3) - 3E(X^2) + 2E(X)$
How should I deal with $E(X^3)$?