Here is another example which is a generalization of Example 1.3 in page 5 in https://arxiv.org/pdf/1606.01576.pdf .
Let $a$,$b$,$c$,$a_1$,$a_2$,$a_3$,$b_2$,$b_4$ and $A$ be real parameters.
Then let:
\begin{eqnarray}
a_3&:=&-2 a A^2 b_2\\
b_4&:=&-A^2 b_2
\end{eqnarray}
Now define:
\begin{eqnarray}
p_0&:=&a_1 (a_1-2 b_2 (c-1))\\
p_1&:=&a_2 (2 a_1-2 b_2 c+b_2)\\
p_2&:=&a_2^2-2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))\\
p_3&:=&A^2 a_2 b_2 (-2 a+2 b-1)
\end{eqnarray}
and
\begin{eqnarray}
P_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\\
P_1&:=&2 a_2 (c-2) (2 a_1-2 b_2 c+b_2)\\
P_2&:=&A^2 \left(a_1^2 (-2 a-2 b+1)+2 a_1 b_2 (3 a+4 b c-7 b-3 c+6)-4 a b_2^2 (2 c-5)
(b-c)\right)+a_2^2 (2 c-5)\\
P_3&:=&2 A^2 a_2 (b_2 (5 a+4 b c-7 b-3 c+4)-2 a_1 (a+b-1))\\
P_4&:=&A^2 (2 a+2 b-3) \left(2 A^2 b_2 (a_1 (a-b+1)+2 a b_2 (b-c))-a_2^2\right)\\
P_5&:=&2 A^4 a_2
b_2 (2 a-2 b+1) (a+b-2)
\end{eqnarray}
and
\begin{eqnarray}
Q_0&:=&a_1 (2 c-3) (a_1-2 b_2 (c-1))\\
Q_1&:=&a_2 (2 c-3) (3 a_1+b_2 (2-4 c))\\
Q_2&:=&A^2 \left((2 a-1) a_1^2 (2 b-1)-2 a_1 b_2 (a (4 b (c-2)+4 c-3)-4 b c+7 b+3 c-6)-12 a b_2^2 (2
c-3) (b-c)\right)+4 a_2^2 (c-2)\\
Q_3&:=&A^2 a_2 (a_1 (a (8 b-6)-6 b+3)+2 b_2 (a (-4 b c+2 b-2 c+9)+2 (2 b-1) (2 c-3)))\\
Q_4&:=&-2 A^2 \left((2 a-1) A^2 (2 b-3) b_2 (a_1 (a-b+1)+2 a b_2 (b-c))+2
a_2^2 (a (-b)+a+b-1)\right)\\
Q_5&:=&2 (1-a) A^4 a_2 (2 b-3) b_2 (2 a-2 b+1)
\end{eqnarray}
and
\begin{equation}
y(x):=F_{2,1}\left[a,b,c,A^2 x^2\right]
\end{equation}
Then the ODE:
\begin{eqnarray}
g^{''}(x) - \frac{\sum\limits_{j=0}^5 P_j x^j}{x(A x-1)(A x+1) (\sum\limits_{j=0}^3 p_j x^j)} g^{'}(x) + \frac{\sum\limits_{j=0}^5 Q_j x^j}{x^2(A x-1)(A x+1) (\sum\limits_{j=0}^3 p_j x^j)} g(x)=0
\end{eqnarray}
is solved by
\begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
\end{eqnarray}
In[14]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x \
=.;
p0 =.; p1 =.; p2 =.; p3 =.;
P0 =.; P1 =.; P2 =.; P3 =.; P4 =.; P5 =.;
Q0 =.; Q1 =.; Q2 =.; Q3 =.; Q4 =.; Q5 =.; Clear[y];
{a3, b4} = {-2 a A^2 b2, -A^2 b2};
{p0, p1, p2, p3} = {a1 (a1 - 2 b2 (-1 + c)), a2 (2 a1 + b2 - 2 b2 c),
a2^2 - 2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c)),
A^2 a2 (-1 - 2 a + 2 b) b2};
{P0, P1, P2, P3, P4, P5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
2 a2 (-2 + c) (2 a1 + b2 - 2 b2 c),
a2^2 (-5 + 2 c) +
A^2 (a1^2 (1 - 2 a - 2 b) - 4 a b2^2 (b - c) (-5 + 2 c) +
2 a1 b2 (6 + 3 a - 7 b - 3 c + 4 b c)),
2 A^2 a2 (-2 a1 (-1 + a + b) + b2 (4 + 5 a - 7 b - 3 c + 4 b c)),
A^2 (-3 + 2 a + 2 b) (-a2^2 +
2 A^2 b2 (a1 (1 + a - b) + 2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (-2 + a + b) b2};
{Q0, Q1, Q2, Q3, Q4, Q5} = {a1 (a1 - 2 b2 (-1 + c)) (-3 + 2 c),
a2 (3 a1 + b2 (2 - 4 c)) (-3 + 2 c),
4 a2^2 (-2 + c) +
A^2 ((-1 + 2 a) a1^2 (-1 + 2 b) - 12 a b2^2 (b - c) (-3 + 2 c) -
2 a1 b2 (-6 + 7 b + 3 c - 4 b c +
a (-3 + 4 b (-2 + c) + 4 c))),
A^2 a2 (a1 (3 - 6 b + a (-6 + 8 b)) +
2 b2 (2 (-1 + 2 b) (-3 + 2 c) +
a (9 + 2 b - 2 c - 4 b c))), -2 A^2 (2 a2^2 (-1 + a + b -
a b) + (-1 + 2 a) A^2 (-3 + 2 b) b2 (a1 (1 + a - b) +
2 a b2 (b - c))),
2 A^4 a2 (1 + 2 a - 2 b) (1 - a) (-3 + 2 b) b2};
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] - (
P5 x^5 + P4 x^4 + P3 x^3 + P2 x^2 + P1 x^1 + P0)/(
x (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 + p0))
D[#, x] + (Q5 x^5 + Q4 x^4 + Q3 x^3 + Q2 x^2 + Q1 x^1 + Q0)/(
x ^2 (-1 + A x) (1 + A x) (p3 x^3 + p2 x^2 + p1 x^1 +
p0)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, c, a1, a2, b2, A, x} =
RandomReal[{0, 1}, 8, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-48}
Update: The ODE above is a seven parameter family.
Now, note that if in the example above we add three additional constraints and as such reduce the number of adjustable parameters to four we get another neat example:
Firstly define:
\begin{eqnarray}
a_1&:=& c-\frac{1}{2}\\
a_2&:=& A \frac{1}{\sqrt{2}} \sqrt{-1+4 a+8 a^2+2 c-8 a c}\\
a_3&:=&-2 a A^2\\
\hline \\
b_2&:=& 1\\
b_4&:=&-A^2 \\
\hline \\
b&:=&a+\frac{1}{2}
\end{eqnarray}
Then the ODE below:
\begin{eqnarray}
&&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!g^{''}(x) + \frac{3-2 c+4 a A^2 x^2}{x(A x-1)(A x+1)} g^{'}(x) + \frac{(-3+2 c) + \sqrt{2} A \sqrt{-1+4 a+8 a^2+2 c-8 a c} x+2(-1-a+2 a^2) x^2}{x^2(A x-1)(A x+1)} g(x)=0
\end{eqnarray}
is solved by
\begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
\end{eqnarray}
In[18]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; x \
=.;
{a1, a2, a3} = {(-(1/2) + c),
A Sqrt[1/2 (-1 + 4 a + 8 a^2 + 2 c - 8 a c)], -2 a A^2};
{b2, b4} = {1, -A^2};
b = a + 1/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 - 2 c + 4 a A^2 x^2)/(x (-1 + A x) (1 + A x))
D[#, x] + ( (-3 + 2 c) +
Sqrt[2] A Sqrt[(-1 + 4 a + 8 a^2 + 2 c - 8 a c)] x +
2 (-1 - a + 2 a^2) A^2 x^2)/(
x ^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{b2, a, c, A, x} = RandomReal[{0, 1}, 5, WorkingPrecision -> 50];
Simplify[eX]
Out[25]= {0.*10^-49}
Secondly define:
\begin{eqnarray}
a_1&:=& 2c-1\\
a_2&:=& A \sqrt{2} \sqrt{(-1+2 a)(-1+b)}\\
a_3&:=&-2 a A^2\\
\hline \\
b_2&:=& 1\\
b_4&:=&-A^2 \\
\hline \\
c&:=&\frac{3}{2}
\end{eqnarray}
Then the ODE below:
\begin{eqnarray}
&&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!g^{''}(x) +
\frac{3+2 A^2(-2+a+b)x^2}{x(A x-1)(A x+1)} g^{'}(x) +
\frac{-3-\sqrt{2} A \sqrt{(-1+2 a)(-1+b)} x+2(-1+a)(-3+2 b) A^2 x^2}{x^2(A x-1)(A x+1)} g(x)=0
\end{eqnarray}
is solved by
\begin{eqnarray}
g(x)&:=& (a_3 x^3+a_2 x^2+a_1 x) y(x) + (b_4 x^4+b_2 x^2) y^{'}(x)
\end{eqnarray}
In[567]:= a =.; b =.; c =.; a1 =.; a2 =.; a3 =.; b2 =.; b4 =.; A =.; \
x =.;
{b2, b4} = {1, -A^2};
{a1, a2, a3} = {2 (c - 1),
Sqrt[2] Sqrt[-1 + 2 a] A Sqrt[-1 + b], -2 a A^2};
c = 3/2;
y[x_] = Hypergeometric2F1[a, b, c, (A x)^2];
eX = (D[#, {x, 2}] + (3 + 2 A^2 (-2 + a + b) x^2)/(
x (-1 + A x) (1 + A x))
D[#, x] + ( -3 - Sqrt[2] A (Sqrt[-1 + 2 a] Sqrt[-1 + b]) x +
2 (-1 + a) (-3 + 2 b) A^2 x^2)/(
x^2 (-1 + A x) (1 + A x)) #) & /@ {(a3 x^3 + a2 x^2 + a1 x) y[
x] + (b4 x^4 + b2 x^2) y'[x]};
{a, b, A, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[574]= {0.*10^-47 + 0.*10^-49 I}