Question
Let $A\in \text{SL}(2,\mathbb{C})$, so $\det(A)=1$. Define the following (Pauli) matrices:
$$\begin{align} \sigma_0=\begin{pmatrix}-1 & 0 \\ 0 & -1 \end{pmatrix} & &\sigma_1=\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} & \\ &\\ \sigma_2=\begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} & &\sigma_3=\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix} & \end{align} $$
Now define the following $4\times 4$ matrix.
$$L_{\mu\nu}\equiv \frac{1}{2}\text{Tr}\left[A\sigma_\mu A^\dagger \sigma_\nu\right]$$
What I am trying to prove is $\det (L)=1$, that's it. But I am having so much trouble. I have verified that it is true via Mathematica. The following is know exactly:
$$\det (L)=\left|\det(A)\right|^4=1$$
Actually, it would be sufficient for my current purposes to show $\det(L)\geq 0$, but even that is very hard for me to show.
Mathematica Code.
ClearAll[s0, s1, s2, s3, s, A]; (* Define the Pauli-Matrices and A \
matrix *)
s0 = {{-1, 0}, {0, -1}};
s1 = {{0, 1}, {1, 0}};
s2 = {{0, -I}, {I, 0}};
s3 = {{1, 0}, {0, -1}};
s = {s0, s1, s2, s3};
A = {{a, b}, {c, d}};
L00 = 1/2*
Tr[A.s0.A[ConjugateTranspose].s0]; (* Define L(A) through the
equation LSubscript[(A)^[Mu], [Nu]] = 1/2Tr[Subscript[A[Sigma],
[Mu]]A[ConjugateTranspose]Subscript[[Sigma], [Nu]]] )
L01 =
1/2Tr[A.s0.A[ConjugateTranspose].s1];
L02 = 1/2Tr[A.s0.A[ConjugateTranspose].s2];
L03 = 1/2Tr[A.s0.A[ConjugateTranspose].s3];
L10 = 1/2Tr[A.s1.A[ConjugateTranspose].s0];
L11 = 1/2Tr[A.s1.A[ConjugateTranspose].s1];
L12 = 1/2Tr[A.s1.A[ConjugateTranspose].s2];
L13 = 1/2Tr[A.s1.A[ConjugateTranspose].s3];
L20 = 1/2Tr[A.s2.A[ConjugateTranspose].s0];
L21 = 1/2Tr[A.s2.A[ConjugateTranspose].s1];
L22 = 1/2Tr[A.s2.A[ConjugateTranspose].s2];
L23 = 1/2Tr[A.s2.A[ConjugateTranspose].s3];
L30 = 1/2Tr[A.s3.A[ConjugateTranspose].s0];
L31 = 1/2Tr[A.s3.A[ConjugateTranspose].s1];
L32 = 1/2Tr[A.s3.A[ConjugateTranspose].s2];
L33 = 1/2Tr[A.s3.A[ConjugateTranspose].s3];
L = {
{L00, L01, L02, L03},
{L10, L11, L12, L13},
{L20, L21, L22, L23},
{L30, L31, L32, L33}
};
TraditionalForm[
FullSimplify[
Det[L]]] (* Evaluate the determinant explicitly, and put it in
legible form *)