Assuming $(X,Y)$ is jointly normal with zero means, unit variances and $\text{Corr}(X,Y)=\rho$, having joint density $f_{X,Y}$.
Define $$(X',Y')\stackrel{\text{i.i.d}}{\sim} N(0,1)$$
such that $(X',Y')$ is independent of $(X,Y)$.
So $(X',Y')$ is (trivially) jointly normal with correlation zero.
This implies $$(U,V)=\left(\frac{X-X'}{\sqrt 2},\frac{Y-Y'}{\sqrt 2}\right)$$ is also jointly normal with zero means and unit variances and $\text{Corr}(U,V)=\rho/2$.
Then,
\begin{align}
E(\Phi(X)\Phi(Y))&=\int_{\mathbb R}\int_{\mathbb R}\Phi(x)\Phi(y)f_{X,Y}(x,y)\,dx\,dy
\\&=\int_{\mathbb R}\int_{\mathbb R}P(X'\leqslant x,Y'\leqslant y)f_{X,Y}(x,y)\,dx\,dy
\\&=\int_{\mathbb R}\int_{\mathbb R}P(X'\leqslant x,Y'\leqslant y\mid X=x,Y=y)f_{X,Y}(x,y)\,dx\,dy
\\\\&=P(X'\leqslant X,Y'\leqslant Y)
\\\\&=P(X-X'\geqslant 0,Y-Y'\geqslant 0)
\\\\&=P\left(\frac{X-X'}{\sqrt 2}\geqslant 0,\frac{Y-Y'}{\sqrt 2}\geqslant 0\right)
\\\\&=P(U\geqslant 0,V\geqslant 0)
\\\\&=\frac{1}{4}+\frac{1}{2\pi}\arcsin\left(\frac{\rho}{2}\right)
\end{align}
In the last line, we used a popular result for the probability that two jointly normal variables both lie in the first quadrant. Proofs can be found here and here.
Finally,
\begin{align}
\text{Corr}(\Phi(X),\Phi(Y))&=\frac{\frac{1}{4}+\frac{1}{2\pi}\arcsin\left(\frac{\rho}{2}\right)-\frac{1}{4}}{\frac{1}{12}}
\\\\&=\frac{6}{\pi}\arcsin\left(\frac{\rho}{2}\right)
\end{align}