Original Title: Tauberian theorems and Cesàro sum
Theorem (Landau-Hardy, From Rudin's Principle of Mathematical Analysis Exercise 3.14)
$\newcommand\abs[1]{\left\lvert#1\right\rvert}$ If $\{s_n\}$ is a complex sequence, define its arithmetic means $\sigma_n$ by $$\sigma_n=\frac{s_0+s_1+\dotsb+s_n}{n+1}\qquad(n=0,1,2,\dotsc)$$ Put $a_n=s_n-s_{n-1}$ for $n\ge1$. Assume $M<+\infty$ and $\abs{na_n}\le M$ for all $n$, and $\lim_{n\to\infty}\sigma_n=\sigma$, then $\lim_{n\to\infty}s_n=\sigma$.
The outline of the proof
If $m<n$, then $$s_n-\sigma_n=\frac{m+1}{n-m}(\sigma_n-\sigma_m)+\frac1{n-m}\sum_{k=m+1}^n(s_n-s_k)\tag{*}$$ Notice that $\abs{s_n-s_k}\le(n-m-1)M\,/\,(m+2)$, fix $\epsilon>0$ and associate with each $n$ the integer $m$ that satisfies $$m\le\frac{n-\epsilon}{1+\epsilon}<m+1$$ Then $(m+1)\,/\,(n-m)\le1/\epsilon$ and $\abs{s_n-s_k}<M\epsilon$. Hence $$\limsup_{n\to\infty}\,\abs{s_n-\sigma}\le M\epsilon$$
Questions and thoughts
It seems that the equation (*) comes out strangely. I wonder how to discover such kind of strange identities. So is there any observation, even deeper, to look through that equation?
Thanks!