We have a well-known conclusion:
If a sequence $\{a_n\}_{n\in\mathbb{N}}$ converges, then the arithmetic mean $\frac{S_n}{n}$ (where $S_n=\sum\limits_{k=1}^na_k$ is the nth partial sum) converges to the same limit.
$\lim\limits_{n\to\infty}a_n=a\implies\lim\limits_{n\to\infty}\frac{S_n}{n}=a$
I hope the inverse process also works, so I add a condition:
Sequence $\{n(a_n-a_{n-1})\}_{n\in\mathbb{N}}$ is bounded, i.e,
$\exists M>0,\forall n\in\mathbb{N},|n(a_n-a_{n-1})|<M$
With such condition, can $\frac{S_n}{n}$ converges implies $a_n$ converges?
I want to prove that
$\lim\limits_{n\to\infty}\frac{S_n}{n}=a,\ |n(a_n-a_{n-1})|<M\implies \lim\limits_{n\to\infty}a_n=a$
I see that
$|a_n-\frac{S_n}{n}|=\frac{1}{n}|\sum\limits_{k=2}^n (k-1)(a_{k}-a_{k-1})| \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq\frac{1}{n}\sum\limits_{k=2}^n |(k-1)(a_{k} - a_{k-1})|\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \leq\frac{1}{n}\sum\limits_{k=2}^n |k(a_{k} - a_{k-1})|\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ < \frac{(n-1)M}{n}<M$
then $|a_n|\leq |\frac{S_n}{n}|+M$ means that $\{a_n\}$ is bounded.
Now I can't continue the proof (Maybe consider a convergent subsequence of$\{a_n\}$? I failed..). Does the added condition works? Could you prove that?
Sincerely looking forward to your help. Thanks!