I was reading this: Characteristic function of Normal random variable squared
And there is a step, where I do not manage to understand the equality marked as "$\stackrel{???}{=}$"
We have $$ F_X\left(\sqrt{y}\right)= \int_{-\infty}^\sqrt{y} \frac{1}{\sqrt{2\pi}} \operatorname{e}^{-\frac{t^2}{2}} \operatorname{d}t$$ and the pdf is $$f_Y(y) = \frac{\operatorname{d}F_Y(y}{\operatorname{d} y}=2\frac{\operatorname{d}F_X(\sqrt{y})}{\operatorname{d} y} \stackrel{???}{=} 2 \frac{1}{\sqrt{2}\sqrt{\pi}} e^{-\frac{y}{2}} \left( \frac{1}{2} y^{-\frac{1}{2}} \right) = \frac{1}{2^{\frac{1}{2}} \Gamma(\frac{1}{2})}y^{\frac{1}{2}-1}e^{-\frac{y}{2}} \Bbb{I}_{[0,+\infty)}(y) $$
Thank you for your insight!