This is from another answer of mine.
Suppose that
$$ A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\1 & 2 & 3 \end{bmatrix} \tag{1}$$
$$ A = LU \tag{2} $$
$$ U =A, L=I \tag{3}$$
$$\ell_{21} = \frac{u_{21}}{u_{11}} = \frac{a_{21}}{a_{11}} = \frac{1}{2} \tag{4} $$
This is where you made the mistake
$$ R_{2} \to R_{2} - \frac{1}{2} R_{1} \tag{5} $$
Then we're going to subtract $\frac{1}{2}$ times the 1st row from the 2nd row
$$ \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} - \frac{1}{2} \cdot \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & \frac{3}{2} & \frac{-1}{2} \end{bmatrix} \tag{6} $$
Updating each of them
$$ L= \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{7} $$
$$ U = \begin{bmatrix} 2 & 1 & 3 \\ 0 & \frac{3}{2} & \frac{-1}{2} \\1 & 2 & 3 \end{bmatrix} \tag{8}$$
$$ \ell_{31} = \frac{u_{31}}{u_{11} } = \frac{1}{2} \tag{9} $$
$$ R_{3} \to R_{3} - \frac{1}{2} R_{1} \tag{10} $$
$$ R_{3} = \begin{bmatrix} 1 & 2 & 3\end{bmatrix} - \frac{1}{2} \begin{bmatrix} 2 & 1 & 3\end{bmatrix} = \begin{bmatrix} 0 & \frac{3}{2} & \frac{3}{2}\end{bmatrix} \tag{11} $$
Updating each of them
$$ L= \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix} \tag{12} $$
$$ U = \begin{bmatrix} 2 & 1 & 3 \\ 0 & \frac{3}{2} & \frac{-1}{2} \\0 & \frac{3}{2} & \frac{3}{2} \tag{13} \end{bmatrix}$$
$$ \ell_{32} = \frac{u_{32}}{u_{22}} = \frac{\frac{3}{2}}{\frac{3}{2}} = 1 \tag{14}$$
$$ R_{3} \to R_{3} - R_{2} \tag{15} $$
$$ R_{3} = \begin{bmatrix} 0 & \frac{3}{2} & \frac{3}{2} \end{bmatrix} - \begin{bmatrix} 0& \frac{3}{2} & \frac{-1}{2} \end{bmatrix} = \begin{bmatrix} 0 &0 & 2\end{bmatrix} \tag{16}$$
Updating each of them
$$ L= \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 1& 1 \end{bmatrix} \tag{17}$$
$$ U = \begin{bmatrix} 2 & 1 & 3 \\ 0 & \frac{3}{2} & \frac{-1}{2} \\0 & 0 & 2 \end{bmatrix} \tag{18} $$
It now terminates
$$ A = LU $$
$$ \underbrace{\begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\1 & 2 & 3 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 1& 1 \end{bmatrix} }_{L} \underbrace{\begin{bmatrix} 2 & 1 & 3 \\ 0 & \frac{3}{2} & \frac{-1}{2} \\0 & 0 & 2 \end{bmatrix}}_{U} \tag{19} $$
Just to confirm this in python
import scipy.linalg
A = scipy.array([[2 ,1,3],[1, 2, 1 ] ,[1,2,3]])
P,L,U = scipy.linalg.lu(A)
L
Out[6]:
array([[1. , 0. , 0. ],
[0.5, 1. , 0. ],
[0.5, 1. , 1. ]])
U
Out[7]:
array([[ 2. , 1. , 3. ],
[ 0. , 1.5, -0.5],
[ 0. , 0. , 2. ]])