1

Let $ S \in \mathbb{R}^n $ and $ A \in \mathbb{R}^{n \times n} $ Is it possible to find $ \alpha \in \mathbb{R} $, as a function of $A$, such that $$ S S^T ( \alpha 1_{n \times n} + A ) + ( \alpha 1_{n\times n} + A^T) S S^T \succeq 0 $$ ?

C Marius
  • 1,485
  • 8
  • 12

1 Answers1

2

Here's a counterexample: take $n=2$, $S = e_1$ and $$ A = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}. $$ you get $$ S S^T ( \alpha 1_{n \times n} + A ) + ( \alpha 1_{n\times n} + A^T) S S^T = A = \begin{pmatrix} 2\alpha & 1\\ 1 & 0 \end{pmatrix} $$ that has $-1$ as determinant, so exactly one eigenvalue is negative.


If you want to probe deeper, try to prove that there exists such an $\alpha$ if and only if $S$ is an eigenvector of $A^T$

Exodd
  • 12,241
  • 2
  • 27
  • 44