$ f(x) = \begin{cases} 1 & \text{if $0\le x \le 1$ } \\ 0 & \text{otherwise }\end{cases}$
Find the PDF of Random variable $Y=\dfrac{X}{1+X}$
$F(Y\le y)=F\bigg(\dfrac{X}{1+X}\le y\bigg)=F\bigg(X\le \dfrac{y}{1-y}\bigg)$
$U=F_x\bigg(\dfrac{y}{1-y}\bigg)$
$\dfrac{dU}{dy}=f(y)\bigg(\dfrac{1}{(1-y)^2}\bigg)$
$f(y)=\bigg(\dfrac{1}{(1-y)^2}\bigg)$
Please check if I did any mistake. I am not sure how to figure out domain after transformation. Heres my try.
$0\le x \le 1$
$1\le x+1\le2$
$1\ge \dfrac{1}{x+1}\ge\dfrac{1}{2}$
$x\ge \dfrac{x}{x+1}\ge\dfrac{x}{2}$
$x\ge y\ge\dfrac{x}{2}$
Is this a correct way to approach result?
$$y=\frac{x}{1+x} \implies x=\frac{y}{1-y}$$
Naturally, $$0<x<1\implies 0<y<1/2$$
So the density of $Y$ is
\begin{align} g(y)&=f\left(\frac{y}{1-y}\right)\left|\frac{dx}{dy}\right| \&=\frac{1}{(1-y)^2}\mathbf1_{0<y<1/2} \end{align}
– StubbornAtom Sep 02 '18 at 18:06