Could someone please verify whether my solution is okay?
Let $G$ be a finite cyclic group with $|G|=n$ and generator $x$. If $y=x^{k}$ and $gcd(k,n)=1$, then show that $y$ is a generator of $G$.
Let $y=x^{k}$ with $gcd(k,n)=1$. Then $|\langle y\rangle|=|y|=\frac{n}{gcd(k,n)}=\frac{n}{1}=n$. Then $G=\langle y\rangle$.