Can we find, using elementary ways, an additive basis of order $2$, $(u_n)_{n\geqslant1}$, such that $\lim\limits_{n\rightarrow+\infty}(u_{n+1}-u_n)=+\infty$ ?
If $\alpha\in\left]1,\frac32\right[$, the sequence $\left(\lfloor n^{\alpha}\rfloor\right)$ works (have a look here), but the proof is a little complicated for me...