Let A be $\ \begin{bmatrix} a & c \\ c & b\end{bmatrix} $ where $\ a,b,c, \in \mathbf R $
Prove $\ A $ eigen values are real numbers.
I guess it should be pretty straight forward so I just need to see what are solutions of characteristic polynomial which will be $\ |A - \lambda I| = (a-\lambda)(b - \lambda) - c^2 = 0 $ but Im not sure how do I prove the only possible values are in $\ \mathbf R $ .
$\ \lambda^2 - \lambda a - \lambda b + ab - c^2 = 0 $