It suffices to consider $X\sim N(0,1)$ since if $W\sim N(0,\sigma ^2)$, it follows that $W=\sigma Z$ where $Z\sim N(0,1)$ and $EW^k=\sigma^k Z^k$. To this effect we must compute
$$
EX^{2n}=\int_{-\infty}^\infty\frac{x^{2n}}{\sqrt{2\pi}}e^{-x^2/2}\,dx.\tag{0}
$$
Define
$$
F(t)=\int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}}e^{-tx^2/2}\,dx\quad(t>0)
\tag{1}
$$
and we compute $F^{(n)}(1)$ in two different ways. First by differentiation under the integral sign
$$
F^{(n)}(t)=\frac{(-1)^n}{2^n}\int_{-\infty}^\infty\frac{x^{2n}}{\sqrt{2\pi}}e^{-tx^2/2}\,dx\implies F^{(n)}(1)=\frac{(-1)^n}{2^n}EX^{2n}.\tag{2}
$$
Second make the substitution $u=x(t/2)^{1/2}$ in (1) and observe that
$$
F(t)=\frac{1}{\sqrt{2\pi}}\sqrt{\frac{{2}}{t}}\underbrace{\int_{-\infty}^\infty e^{-u^2}\, du}_\text{$=\sqrt{\pi}$}=t^{-1/2}
\implies F^{(n)}(1)=\frac{(-1)^n}{2^n}(1\cdot3\cdot5\cdots2n-1)
\tag{3}
$$
Comparing (2) and (3) it follows at once that
$$
EX^{2n}=1\cdot3\cdot5\cdots2n-1=\frac{(2n)!}{2^nn!}.
$$