$\newcommand{\opnorm}[1]{\left\| #1 \right\|_{\mathrm{op}}} \newcommand{\norm}[1]{\left\| #1 \right\|}$ Suppose we have $X = x_1 x_2^\top \in \mathbb{R}^{n \times d}$ a rank-1 matrix which is non-symmetric in general. I want to either prove that $\| X\|_F = \opnorm{X}$ or give an upper bound $\norm{X}_F \leq c \opnorm{X}$, where ideally $c$ does not depend on the dimensions of $X$. My attempt:
$$ \opnorm{X} = \sup_{\norm{v} = 1} \norm{Xv}_2 = \sqrt{\sup_{\norm{v} = 1} \norm{Xv}_2^2} = \sqrt{\sup_{\norm{v} = 1} v^\top X^\top X v} = \sqrt{\lambda_{\max}(X^\top X)} $$
For the Frobenius norm, use $X$'s singular value decomposition to write $X = USV^\top$, and obtain
$$ \norm{X}_F = \sqrt{\mathrm{tr}(X^\top X)} = \sqrt{\mathrm{tr}(V S U^\top U S V^\top)} = \sqrt{\mathrm{tr}( S^2)} = \sqrt{\sum_{i=1}^{\mathrm{rank}(X)} \sigma_i^2} = \sqrt{\sigma_1^2} $$
However, we know that the singular values of $A$ are the square roots of the eigenvalues of $X^\top X$, therefore $\sigma_1^2 = \lambda_{\max}(X^\top X)$. Hence $\norm{X}_F = \opnorm{X}$.
Is the above proof correct?