$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\lim_{n\to \infty}{1 \over n} \bracks{\rule{0pt}{5mm}\pars{m + 1}\pars{m + 2} \ldots\pars{m + n}}^{\,1/n}}
\\[5mm] = & \
\lim_{n\to \infty}{1 \over n} \bracks{\rule{0pt}{5mm}\Gamma\pars{m + 1 + n} \over
\Gamma\pars{m + 1}}^{\,1/n} =
\lim_{n\to \infty}\ {1 \over n} \bracks{\rule{0pt}{5mm}\pars{n + m}!}^{\,1/n}
\\[5mm] = & \
\lim_{n\to \infty}\ {1 \over n} \bracks{\rule{0pt}{5mm}\root{2\pi}\pars{n + m}^{n + m + 1/2}\,\,\,
\expo{-n - m}}^{\,1/n}
\\[5mm] = & \
\lim_{n\to \infty}\ {1 \over n} \bracks{\rule{0pt}{5mm}n^{n + m + 1/2}\,\,\,
\pars{1 + {m \over n}}^{n}\,\,\,\expo{-n - m}}^{\,1/n}
\\[5mm] = & \
\lim_{n\to \infty}\ {1 \over n} \bracks{\rule{0pt}{5mm}n^{1 + m/n + 1/\pars{2n}}\,\,\,\,\expo{m/n}
\expo{-1 - m/n}}
\\[5mm] = & \ \bbx{\color{#44f}{\large{1 \over \expo{}}}} \approx 0.3679\\ &
\end{align}
$\ds{m}$ must satisfy $\ds{\quad \lim_{n \to \infty}\Gamma^{1/n}\pars{m + 1} = 1}$.