$$\lim_{n \to \infty} \frac{1}{n}\left((m+1)(m+2) \cdots (m+n)\right)^{\frac{1}{n}}$$
My try:$$A=\lim_{n \to \infty} \frac{1}{n}\left((m+1)(m+2) \cdots (m+n)\right)^{\frac{1}{n}}$$
Taking Natural log we get
$$\ln(A)=\lim_{n \to \infty}\frac{1}{n}\sum_{k=1}^n\ln\left(\frac{m+k}{n}\right)$$
But i cant use Riemann Sum , Any idea?