Hint $ $ There is a $\rm\color{darkorange}{unique}$ denominator $\rm\,\color{#0a0} {2^K}$ having maximal power of $\:\!2,\,$ so scaling by $\rm\,\color{#c00}{2^{K-1}}$ we deduce a contradiction $\large \rm\, \frac{1}2 = \frac{c}d \,$ with odd $\rm\,d \:$ (vs. $\,\rm d = 2c),\,$ e.g.
$$\begin{eqnarray} & &\rm\ \ \ \ \color{0a0}{m} &=&\ \ 1 &+& \frac{1}{2} &+& \frac{1}{3} &+&\, \color{#0a0}{\frac{1}{4}} &+& \frac{1}{5} &+& \frac{1}{6} &+& \frac{1}{7} \\
&\Rightarrow\ &\rm\ \ \color{#c00}{2}\:\!m &=&\ \ 2 &+&\ 1 &+& \frac{2}{3} &+&\, \color{#0a0}{\frac{1}{2}} &+& \frac{2}{5} &+& \frac{1}{3} &+& \frac{2}{7}^\phantom{M^M}\\
&\Rightarrow\ & -\color{#0a0}{\frac{1}{2}}\ \ &=&\ \ 2 &+&\ 1 &+& \frac{2}{3} &-&\rm \color{#c00}{2}\:\!m &+& \frac{2}{5} &+& \frac{1}{3} &+& \frac{2}{7}^\phantom{M^M}
\end{eqnarray}$$
All denom's in the prior fractions are odd so they sum to fraction with odd denom $\rm\,d\, |\, 3\cdot 5\cdot 7$.
Note $ $ Said $\rm\color{darkorange}{uniqueness}$ has easy proof: if $\rm\:j\:\! 2^K$ is in the interval $\rm\,[1,n]\,$ then so too is $\,\rm \color{#0a0}{2^K}\! \le\, j\:\!2^K.\,$ But if $\,\rm j\ge 2\,$ then the interval contains $\rm\,2^{K+1}\!= 2\cdot\! 2^K\! \le j\:\!2^K,\,$ contra maximality of $\,\rm K$.
The argument is more naturally expressed using valuation theory, but I purposely avoided that because Anton requested an "elementary" solution. The above proof can easily be made comprehensible to a high-school student.
Generally we can similarly prove that a sum of fractions is nonintegral if the highest power of a prime $\,p\,$ in any denominator occurs in $\rm\color{darkorange}{exactly\ one}$ denominator, e.g. see the Remark here where I explain how it occurs in a trickier multiplicative form (from a contest problem). In valuation theory, this is a special case of a basic result on the valuation of a sum (sometimes called the "dominance lemma" or similar). Another common application occurs when the sum of fractions arises from the evaluation of a polynomial, e.g. see here and its comment.