$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\sum_{f_{1} = 0}^{\infty}\sum_{f_{2} = 0}^{\infty}
\sum_{f_{3} = 0}^{\infty}\sum_{f_{4}
= 0}^{\infty}
\bracks{z^{10}}z^{f_{1} + f_{2} + f_{3} + f_{4}}}
\\[3mm] = & \
\bracks{z^{10}}\pars{\sum_{f = 0}^{\infty}z^{f}}^{4} =
\bracks{z^{10}}\pars{1 - z}^{-4} = {-4 \choose 10}\pars{-1}^{10}
\\[5mm] = & \
{13 \choose 10}\pars{-1}^{10} = {13 \times 12 \times 11 \over 3 \times 2} = \bbx{\color{#44f}{286}}
\end{align}