Consider the second degree terms: $x^2 + 4xy + y^2$. In general, if the second degree term is $Ax^2 + Bxy + Cy^2$, then the discriminant is $D = B^2 - 4AC$. If the conic section is non-degenerate, then
\begin{align}
D > 0 & \implies \text{Hyperbola}\\
D = 0 & \implies \text{Parabola}\\
D < 0 & \implies \text{Ellipse}
\end{align}
Hence, in your case, it can be a hyperbola or a pair of straight lines.
Now factorize the second degree term as follows.
$$x^2 + 4xy + y^2 = \underbrace{(x+(2+\sqrt{3}) y)}_{X}\underbrace{(x+(2-\sqrt{3}) y)}_{Y}$$
$$x^2 + 4xy + y^2 -3x + 21 y - 15 = XY + aX + bY - 15 =0$$
Hence, we get that $a+ b= -3$ and $(2+\sqrt{3})a+ (2-\sqrt{3})b= 21$.
This gives us $a = \dfrac32 (-1 + 3 \sqrt{3})$ and $b = \dfrac32(-1 - 3 \sqrt{3})$.
Hence, $$x^2 + 4xy + y^2 -3x + 21 y - 15 = XY + aX + bY - 15 = (X+b)(Y+a) - ab - 15 = 0$$
Hence, $$(X+b)(Y+a) = 15 - \dfrac{117}2 = -\dfrac{87}2$$
in the canonical hyperbola form.