Find the length of latus rectum of the conic $7x^2+12xy-2y^2-2x+4y-7=0$.
The given conic $7x^2+12xy-2y^2-2x+4y-7=0$ is a hyperbola because when i compare it with $ax^2+2hxy+by^2+2gx+2hy+c=0$ and found $h^2-ab>0$,
Then i tried to change $7x^2+12xy-2y^2-2x+4y-7=0$ into the standard form $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ so that length of latus rectum is $\frac{2b^2}{a}$
$7x^2+12xy-2y^2=7x^2-2(-6xy+y^2)=7x^2-2(9x^2-2.3x.y+y^2)+18x^2$
$=25x^2-2(3x-y)^2$
$7x^2+12xy-2y^2-2x+4y-7=25x^2-2(3x-y)^2-2x+4y-7$
Let $x=X,3x-y=Y$ so that $y=3X-Y$
$25x^2-2(3x-y)^2-2x+4y-7=0$ becomes $25X^2-2Y^2-2X+4(3X-Y)-7=0$
$25X^2-2Y^2+10X-4Y-7=0$
$(25X^2+10X+1)-2(Y^2+2Y+1)+2-1-7=0$
$(5X+1)^2-2(Y+1)^2=6$
$\frac{(5X+1)^2}{6}-\frac{(Y+1)^2}{3}=1$
$\frac{(5x+1)^2}{6}-\frac{(3x-y+1)^2}{3}=1$
Now this is in the standard form,So $a^2=6,b^2=3$ and length of latus rectum is $\frac{2b^2}{a}=\frac{6}{\sqrt6}=\sqrt6$
But the answer given is $\sqrt{\frac{48}{5}}$I dont know where i am wrong?