Exercise 1.1.6. (b) For positive real numbers $a_1, a_2, ... , a_n$ prove that
$$(a_1+a_2+ \ldots +a_n)\Big(\frac{1}{a_1}+\frac{1}{a_2}+ \ldots +\frac{1}{a_n}\Big) \geq n^2.$$
From $AM \geq GM$:
$$a_1+a_2+\ldots+a_n \geq n\sqrt[n]{a_1a_2 \ldots a_n}$$ $$a_2a_3 \ldots a_n + a_1a_3 \ldots a_n + \ldots + a_1a_2 \ldots a_{n-1} \geq n\sqrt[n]{(a_1a_2 \ldots a_n)^{n-1}}$$
Multiply, $$(a_1+a_2+\ldots+a_n)(a_2a_3 \ldots a_n + a_1a_3 \ldots a_n + \ldots + a_1a_2 \ldots a_{n-1}) \geq n^2 \cdot a_1a_2 \ldots a_n$$
$$(a_1+a_2+ \ldots +a_n)\Big(\frac{1}{a_1}+\frac{1}{a_2}+ \ldots +\frac{1}{a_n}\Big) \geq n^2.$$
I'm not satisfied with this. I'm looking for a better way to prove it...or at least a better way to write it (notation).