Let $F : V \to \Bbb S^{n\times n}$ be a linear map, where $V$ is a vector space and and $S^{n\times n}$ is the set of $n \times n$ symmetric matrices. Prove that the LMI $F(x) \succ 0$ is feasible if and only if the LMI $F(x) \succeq I_{n \times n}$ is feasible.
I kind know I show use eigenvalue of matrix $F(x)$ to find
$$\begin{bmatrix} F_1(x) & & \\ & F_2(x) & \\ & & F_3(x) \\ \end{bmatrix}$$
but got stuck here. Please Help!