$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\sum_{k = 0}^{m}\pars{m - k}!{m \choose m - k}{n \choose n - \bracks{m - k}}
\pars{1 - p}^{k}\, p^{m - k}\,{\expo{-\lambda}\lambda^{n - \pars{m -k}}
\over \bracks{n - \pars{m - k}}!}
\\[5mm] = &\
\sum_{k = 0}^{m}k!{m \choose k}{n \choose n - k}
\pars{1 - p}^{m - k}\, p^{k}\,{\expo{-\lambda}\lambda^{n - k}
\over \pars{n - k}!}
\\[5mm] = &\
\pars{1 - p}^{m}\expo{-\lambda}\lambda^{n}
\sum_{k = 0}^{m}{k! \over \pars{n - k}!}{m \choose k}{n \choose n - k}
\bracks{p \over \pars{1 - p}\lambda}^{k}
\\[5mm] = &\
\pars{1 - p}^{m}\expo{-\lambda}\lambda^{n}
\sum_{k = 0}^{m}{m!\, n! \over \pars{n - k}!\pars{m - k}!\pars{n - k}!}
{\bracks{p/\pars{1 - p}\lambda}^{\, k} \over k!}
\\[5mm] = &\
\pars{1 - p}^{m}\expo{-\lambda}\lambda^{n}
\sum_{k = 0}^{m}{\bracks{\prod_{i = 1}^{k}\pars{m - i + 1}}
\bracks{\prod_{j = 1}^{k}\pars{n - j + 1}} \over
\prod_{\ell = 1}^{k}\pars{n - \ell}}
{\bracks{p/\pars{1 - p}\lambda}^{\, k} \over k!}
\\[5mm] = &\
\pars{1 - p}^{m}\expo{-\lambda}\lambda^{n}
\sum_{k = 0}^{m}{\bracks{\pars{-1}^{k}\prod_{i = 1}^{k}\pars{i - m - 1}}
\bracks{\pars{-1}^{k}\prod_{j = 1}^{k}\pars{j - n - 1}} \over
\pars{-1}^{k}\prod_{\ell = 1}^{k}\pars{\ell - n}}
{\bracks{p/\pars{1 - p}\lambda}^{\, k} \over k!}
\\[5mm] = &\
\pars{1 - p}^{m}\expo{-\lambda}\lambda^{n}
\sum_{k = 0}^{m}{\pars{-m}_{k}\pars{-n}_{k} \over \pars{1 - n}_{k}}
{\bracks{-p/\pars{1 - p}\lambda}^{\, k} \over k!}
\\[5mm] = &\
\bbx{\pars{1 - p}^{m}\expo{-\lambda}\lambda^{n}\
\mbox{}_{2}\mrm{F}_{1}\pars{-m,-n;1 - n;-\,{p \over \pars{1 - p}\lambda}}}
\end{align}
See
The Hypergeometric Series.