Let $(X,\mu)$ be a measure space.
Let $\varphi_1,\varphi_2\in L^\infty(\mu)$, why $$\sup_{\|f\|_{L^2(\mu)}= 1}\left(\int_X |\phi_1|^2 |f|^2d\mu + \int_X |\phi_2|^2 |f|^2d\mu\right)=||\,|\phi_1|^2+|\phi_2|^2||_\infty\;?$$
Let $(X,\mu)$ be a measure space.
Let $\varphi_1,\varphi_2\in L^\infty(\mu)$, why $$\sup_{\|f\|_{L^2(\mu)}= 1}\left(\int_X |\phi_1|^2 |f|^2d\mu + \int_X |\phi_2|^2 |f|^2d\mu\right)=||\,|\phi_1|^2+|\phi_2|^2||_\infty\;?$$
This part $$ \sup_{\|\,f\|_{L^2(\mu)}\leq 1}\left(\int_X |\phi_1|^2 |\,f|^2d\mu + \int_X |\phi_2|^2 |f|^2d\mu\right)\le\|\,|\phi_1|^2+|\phi_2|^2\|_\infty=M $$ is straight-forward. For the inverse inequality, the definition of essential supremum (or $L^\infty$-norm) implies that, for every $\varepsilon>0$, there $$ \mu\left(\{x: |\phi_1(x)|^2+|\phi_2(x)|^2>M-\varepsilon \}\right)>0. $$ Set $$U_\varepsilon=\{x: |\phi_1(x)|^2+|\phi_2(x)|^2>M-\varepsilon \} $$ and pick $W_\varepsilon\subset U_\varepsilon$, so that $$ 0<\mu(W_\varepsilon)<\infty $$ and set $$ f_\varepsilon=\frac{1}{\sqrt{\mu(W\varepsilon)}}\chi_{W_\varepsilon} $$ Clearly, $$\int_X |f_\varepsilon|^2\,d\mu=1$$ and $$ \left(\int_X |\phi_1|^2 |\,f_\varepsilon|^2d\mu + \int_X |\phi_2|^2 |\,f_\varepsilon|^2d\mu\right)\ge \int_{W_\varepsilon}\big( |\phi_1|^2+|\phi_2|^2\big) |\,f_\varepsilon|^2d\mu \ge M-\varepsilon. $$ Hence $$ \sup_{\|\,f\|_{L^2(\mu)}\leq 1}\left(\int_X |\phi_1|^2 |\,f|^2d\mu + \int_X |\phi_2|^2 |f|^2d\mu\right)\ge M-\varepsilon, $$ for all $\varepsilon>0$.
Why we can pick $W_\varepsilon\subset U_\varepsilon$, such that $$ 0<\mu(W_\varepsilon)<\infty ?? $$ Thank you.
– Schüler Mar 06 '18 at 06:04