Let $(X,\mu)$ be a measure space (not necessary $\sigma$-finite) and $\varphi_1,\varphi_2\in L^\infty(\mu)$.
I want to show that $$\sup_{\|f\|_{L^2(\mu)}=1}\left(\left|\int_X \phi_1 |f|^2d\mu\right |^2 + \left|\int_X \phi_2 |f|^2d\mu\right |^2\right) \ge \sup_{\|f\|_{L^2(\mu)}=1}\left(\int_X |\phi_1|^2 |f|^2d\mu + \int_X |\phi_2|^2 |f|^2d\mu\right).$$
By this answer (1), we have
$$\sup_{\|f\|_{L^2(\mu)}= 1}\left(\int_X |\phi_1|^2 |f|^2d\mu + \int_X |\phi_2|^2 |f|^2d\mu\right)=||\,|\phi_1|^2+|\phi_2|^2||_\infty:=M.$$
How we can prove that $$\sup_{\|f\|_{L^2(\mu)}=1}\left(\left|\int_X \phi_1 |f|^2d\mu\right |^2 + \left|\int_X \phi_2 |f|^2d\mu\right |^2\right) \ge M\;?$$