Finding product of terms taken $3$ at a time in $\displaystyle \prod^{100}_{r=1}(x+r)$
Try:
$$\displaystyle \prod^{100}_{r=1}(x+r)=x^{100}+(1+2+3+\cdots +100)x^{99}+(1\cdot 2+1\cdot 3+\cdots+100\cdot 99)x^{98}+(1\cdot 2\cdot 3+2\cdot 3 \cdot 4+\cdot\cdots+98\cdot 99\cdot 100)x^{98}+\cdots$$
for $1$ at a time (Coefficient of $x^{99}$) is $\displaystyle \sum^{100}_{i=1}i = 50\cdot 101$
for $2$ at a time (Coefficient of $x^{98}$) is $\displaystyle \sum^{100}_{i=1}\sum^{100}_{j=1\;, (1\leq i<j \leq 100)}i \cdot j= \frac{1}{2}\bigg[\bigg(\sum^{100}_{i=1}i\bigg)^2-\sum^{100}_{i=1}i^2\bigg]$
But could some help me how to find coefficient of $x^{97},$ thanks