$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\bracks{x^{n - 2}}\pars{x - 1}\pars{x - 2}\cdots\pars{x - n} =\
{\Large ?}}$
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\bracks{x^{n - 2}}\pars{x - 1}\pars{x - 2}\cdots\pars{x - n}}} =
\bracks{x^{2 - n}}{\pars{1 - x}\pars{1 - 2x}\cdots\pars{1 - nx} \over x^{n}} =
\bracks{x^{2}}\pars{1 - x}\pars{1 - 2x}\cdots\pars{1 - nx} = {1 \over 2}\,\mrm{f}''\pars{0}
\end{align}
where $\ds{\mrm{f}\pars{x} = \prod_{k = 1}^{n}\pars{1 - kx}}$.
Then $\ds{\pars{~\mbox{note that}\ \bbx{\mrm{f}\pars{0} = 1}~}}$,
\begin{align}
\totald{\ln\pars{\mrm{f}\pars{x}}}{x} & =
{\mrm{f}'\pars{x} \over \mrm{f}\pars{x}} = \sum_{k = 1}^{n}{k \over kx - 1}
\implies
\bbx{\mrm{f}'\pars{0} = -\sum_{k = 1}^{n}k}
\\[5mm]
\totald[2]{\ln\pars{\mrm{f}\pars{x}}}{x} & =
{\mrm{f}''\pars{x}\mrm{f}\pars{x} - \mrm{f}'^{2}\pars{x} \over \mrm{f}^{2}\pars{x}} = -\sum_{k = 1}^{n}{k^{2} \over \pars{kx - 1}^{2}}
\\[5mm] \implies &\
\bbx{\mrm{f}''\pars{0} =
\pars{\sum_{k = 1}^{n}k}^{2} - \sum_{k = 1}^{n}k^{2}}
\end{align}
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\bracks{x^{n - 2}}\pars{x - 1}\pars{x - 2}\cdots\pars{x - n}}} =
{\pars{\sum_{k = 1}^{n}k}^{2} - \sum_{k = 1}^{n}k^{2} \over 2}
\\[5mm] & =
{1 \over 2}\bracks{{n^{2}\pars{n + 1}^{2} \over 4} -
{n\pars{n + 1}\pars{2n + 1} \over 6}}
\\[5mm] & =
\bbx{%
{1 \over 8}\,n^{4} + {1 \over 12}\,n^{3} - {1 \over 8}\,n^{2} - {1 \over 12}\,n} \\ &
\end{align}