8

Question

Find the coefficient of $x^{n-2}$ in the expression $$(x-1)(x-2)(x-3)\dots(x-n)~~.$$

My approach

The coefficient of $x^n$ is $1$. The coefficient of $x^{n-1}$ is $- \frac{n(n+1)}{2}$

But I cannot proceed from here.

I would appreciate any help.

FD_bfa
  • 4,757

5 Answers5

11

Finding the coefficient of $x^{n-2}$ requires picking $2$ terms from the product to multiply the constants. Thus, we get the coefficient to be $$ \begin{align} \sum_{k=2}^n\sum_{j=1}^{k-1}jk &=\sum_{k=2}^n\sum_{j=1}^{k-1}\binom{j}{1}k\\ &=\sum_{k=2}^n\binom{k}{2}k\\ &=\sum_{k=2}^n\binom{k}{2}((k-2)+2)\\ &=\sum_{k=2}^n\left(3\binom{k}{3}+2\binom{k}{2}\right)\\ &=3\binom{n+1}{4}+2\binom{n+1}{3}\\[3pt] &=\frac{(3n+2)(n^3-n)}{24} \end{align} $$

robjohn
  • 353,833
  • Nice Robjohn. Please explain me how can i calculate coefficient of $x^{n-3}$ in $(x-1)(x-2)\cdots(x-n),$ thanks – DXT Dec 27 '17 at 07:53
  • @DurgeshTiwari: it is pretty much the same except we are picking three terms from the product to multiply the constants. This would require another answer to address fully, so if you still need more detail, it might be best to post another question. – robjohn Dec 27 '17 at 19:54
  • Thanks robjohn . i have posted her. https://math.stackexchange.com/questions/2582647/product-of-terms-taken-3-at-a-time-in-polynomial-expression – DXT Dec 28 '17 at 05:06
9

Observe that the coefficient of $x^1$ in $$(x-1)(x-2)(x-3)$$ is $$2\cdot3+1\cdot2+1\cdot3$$

or the coefficient of $x^{4-2}$ in $$(x-1)(x-2)(x-3)(x-4)=(x-1)(x-4)(x-2)(x-3)=(x^2-(1+4)x+1\cdot4)(x^2-(2+3)x+2\cdot3)$$

is $$2\cdot3+(1+4)(2+3)+1\cdot4$$

So, the required sum $$=\sum_{1\le r_1<r_2\le n}r_1r_2=\dfrac{(\sum_{r=1}^n r)^2-\sum_{r=1}^n r^2}2$$

4

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

$\ds{\bracks{x^{n - 2}}\pars{x - 1}\pars{x - 2}\cdots\pars{x - n} =\ {\Large ?}}$

\begin{align} &\bbox[10px,#ffd]{\ds{% \bracks{x^{n - 2}}\pars{x - 1}\pars{x - 2}\cdots\pars{x - n}}} = \bracks{x^{2 - n}}{\pars{1 - x}\pars{1 - 2x}\cdots\pars{1 - nx} \over x^{n}} = \bracks{x^{2}}\pars{1 - x}\pars{1 - 2x}\cdots\pars{1 - nx} = {1 \over 2}\,\mrm{f}''\pars{0} \end{align}

where $\ds{\mrm{f}\pars{x} = \prod_{k = 1}^{n}\pars{1 - kx}}$.

Then $\ds{\pars{~\mbox{note that}\ \bbx{\mrm{f}\pars{0} = 1}~}}$, \begin{align} \totald{\ln\pars{\mrm{f}\pars{x}}}{x} & = {\mrm{f}'\pars{x} \over \mrm{f}\pars{x}} = \sum_{k = 1}^{n}{k \over kx - 1} \implies \bbx{\mrm{f}'\pars{0} = -\sum_{k = 1}^{n}k} \\[5mm] \totald[2]{\ln\pars{\mrm{f}\pars{x}}}{x} & = {\mrm{f}''\pars{x}\mrm{f}\pars{x} - \mrm{f}'^{2}\pars{x} \over \mrm{f}^{2}\pars{x}} = -\sum_{k = 1}^{n}{k^{2} \over \pars{kx - 1}^{2}} \\[5mm] \implies &\ \bbx{\mrm{f}''\pars{0} = \pars{\sum_{k = 1}^{n}k}^{2} - \sum_{k = 1}^{n}k^{2}} \end{align}


\begin{align} &\bbox[10px,#ffd]{\ds{% \bracks{x^{n - 2}}\pars{x - 1}\pars{x - 2}\cdots\pars{x - n}}} = {\pars{\sum_{k = 1}^{n}k}^{2} - \sum_{k = 1}^{n}k^{2} \over 2} \\[5mm] & = {1 \over 2}\bracks{{n^{2}\pars{n + 1}^{2} \over 4} - {n\pars{n + 1}\pars{2n + 1} \over 6}} \\[5mm] & = \bbx{% {1 \over 8}\,n^{4} + {1 \over 12}\,n^{3} - {1 \over 8}\,n^{2} - {1 \over 12}\,n} \\ & \end{align}
Felix Marin
  • 94,079
2

Taking the long way: \begin{align} f_{n}(x) &= (x-1)(x-2)\cdots(x-n) \\ f_{1}(x) &= x-1 \\ f_{2}(x) &= x^2 - 3x + 2 \\ f_{3}(x) &= x^3 - 6x^2 + 11x - 6\\ f_{4}(x) &= x^4 - 10x^3 + 35x^2 = 50x + 24 \\ f_{5}(x) &= x^5 - 15x^4 + 85x^3 - 215x^2 + 274x - 120. \end{align} From here it is determined that $[x^n] \, f_{n}(x) = 1$, $[x^{n-1}] \, f_{n}(x) = -\binom{n+1}{2} = s(n+1,n)$ and $[x^{n-2}] \, f_{n}(x) \in \{ 2, 11, 35, 85, 175, \cdots \}$. This pattern follows the (signed) Stirling numbers of the first kind, $s(n+2,n)$ or $$[x^{n-2}] \, f_{n}(x) = \frac{(n-1) (n) (n+1) (3 n + 2)}{4!} = s(n+1, n-1).$$ One may compare the values obtained to A000914.

Leucippus
  • 27,174
2

For $~x^{n-1}~$ the coefficient would be sum of the roots that is $~1+2+3+4+5+\cdots+n~$ for $~x^{n-2}~$ coefficient would be sum of roots taken two at a time that is $~1.2+2.3+3.4+4.5+\cdots+(n-1)n~$ so let it be $~S~$ them $~S~$ can be find using steps below $$(1+2+3+4+5+\cdots+n)^2=(1^2+2^2+3^3+\cdots+n^2)+2(1.2+2.3+3.4+\cdots+(n-1)n)$$ So $$(1+2+3+4+5+\cdots+n)^2=(1^2+2^2+3^3+\cdots+n^2)+2(S)$$

So this can be find as we know sum of $~n~$ natural no That is $~\frac{1}{2}\{n(n+1)\}~$ and sum of squares of first $~n~$ natural number is $~\frac{1}{6}\{n(n+1)(2n+1)\}~$ so this value can be found

Thanks for opportunity to solve the problem

nmasanta
  • 9,640