Let $a\in\mathbb{Z}\left[\sqrt{D}\right]$. Then $a$ is a unit iff $N\left(a\right)=\pm1$.
To prove this, remember that $N\left(ab\right)=N\left(a\right)N\left(b\right)$. Thus, if $a|b$ also $N\left(a\right)|N\left(b\right)$. A unit $a$ satisfies both $1|a$ and $a|1$ and therefore $N\left(1\right)|N\left(a\right)$ and $N\left(a\right)|N\left(1\right)$. But $N\left(1\right)=1$ and this happens in $\mathbb{Z}$, forcing $N\left(a\right)=\pm 1$. The other direction follows immediately from the fact that $N\left(a\right)=a\bar{a}=\pm 1$ so $a^{-1}=\pm\bar{a}$.
Now, for a unit $a\in\mathbb{Z}\left[\sqrt{-5}\right]$. If one writes $a=x+y\sqrt{-5}$, then you have to require
$$N\left(a\right)=x^2+5y^2=1$$
If $y\neq 0$, you can clearly see that $N\left(a\right)\geq 5y^2\geq5$. Thus for this equation to hold you must have $y=0$ and then it is easy to see that $x=\pm 1$.