Prove that $\{ A \in \mathbb{R}^{n \times n} \mid A \text{ is symmetric}\}^{\bot} = \{ A \in \mathbb{R}^{n \times n} \mid A \ \text{is skew-symmetric}\}$ with $\langle A, B \rangle = \operatorname{Tr}(A^\top B)$.
(Note: I am aware of the other 3 questions posted about this problem on this forum, this one too.)
Proof.
Let $\{A\in\mathbf{R}^{n\times n}\mid A\text{ symmetric}\}=W$ and $\{A\in\mathbf{R}^{n\times n}\mid A\text{ antisymmetric}\}=V$.
We first prove the inclusion $\supseteq$. Let $A\in V$, then we have to show that $A\in W^\perp$, or equivalently $A\perp B$ for all $B\in\mathbf{R}^{n\times n}$ symmetric. We have $$\langle A,B\rangle=\operatorname{Tr}(A^\top B)=\operatorname{Tr}(-AB)=-\operatorname{Tr}(AB^\top)=-\operatorname{Tr}(B^\top A)=-\langle B,A\rangle=-\langle A,B\rangle$$ so $\langle A,B\rangle=0$, therefore $A\in W^\top$.
Now we prove the inclusion $\subseteq$. Let $A\in W^\perp$, then we have to show that $A\in V$.
Consider the inner product $\langle A,A+A^\top \rangle$. Since $(A+A^\top)^\top=A+A^\top$, we have that $A+A^\top$ is symmetric for all $A\in \mathbf{R}^{n\times n}$ and because $A$ is orthogonal to all symmetric matrices, this inner product is equal to $0$. But we also have $$0=\langle A,A+A^\top\rangle=\langle A,A\rangle+\langle A,A^\top\rangle \iff \langle A,A\rangle=\langle A,-A^\top\rangle$$ Here comes the problem: I want to deduce from this step that $A=-A^\top$, but I realise that this is not allowed.
How should I prove the second inclusion? I know that otherwise I can use something that uses the unique decomposition of $A\in\mathbf{R}^{n\times n}$ as sum of a symmetric and an antisymmetric matrix $A=\frac{A+A^\top}{2}+\frac{A-A^\top}{2}$, but I don't see how this would help.