The note of Alex says that it remains to prove that
$$(a_1+a_2+a_3+3)^3\geq a_1a_2a_3\left(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+3\right)^3$$ for all $a_i\geq1$.
Indeed, let $a_1=a^3$, $a_2=b^3$ and $a_3=c^3$.
Thus, it's enough to prove that
$$a^3+b^3+c^3+3\geq abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+3\right)$$ or
$$a^2b^2c^2(a^3+b^3+c^3+3)\geq a^3b^3+a^3c^3+b^3c^3+3a^3b^3c^3$$ or
$$a^2b^2c^2\sum_{cyc}(a^3-abc)\geq\sum_{cyc}(a^3b^3-a^2b^2c^2)$$ or
$$a^2b^2c^2(a+b+c)\sum_{cyc}(a-b)^2\geq(ab+ac+bc)\sum_{cyc}c^2(a-b)^2$$ or
$$\sum_{cyc}(a-b)^2c^2(a^2b^2(a+b+c)-ab-ac-bc)\geq0.$$
Now, since our inequality is symmetric, we can assume $a\geq b\geq c$.
Thus, $$\sum_{cyc}(a-b)^2c^2(a^2b^2(a+b+c)-ab-ac-bc)\geq$$
$$\geq(a-c)^2b^2(a^2c^2(a+b+c)-ab-ac-bc)+(b-c)^2a^2(b^2c^2(a+b+c)-ab-ac-bc)\geq$$
$$\geq(b-c)^2a^2(a^2c^2(a+b+c)-ab-ac-bc)+(b-c)^2a^2(b^2c^2(a+b+c)-ab-ac-bc)=$$
$$=(b-c)^2a^2(c^2(a^2+b^2)(a+b+c)-2(ab+ac+bc))\geq$$
$$\geq(b-c)^2a^2((a+b)(a+b+c)-2(ab+ac+bc))=(b-c)^2a^2(a^2+b^2-ac-bc)\geq0$$
and we are done!