Let $x_{i}\ge 1$,show that $$\left(\sum_{i=1}^{n}x_{i}+n\right)^n\ge \left(\prod_{i=1}^{n}x_{i}\right)\left(\sum_{i=1}^{n}\dfrac{1}{x_{i}}+n\right)^n$$
or $$\left(\dfrac{\sum_{i=1}^{n}x_{i}+n}{\sum_{i=1}^{n}\dfrac{1}{x_{i}}+n}\right)^n\ge \prod_{i=1}^{n}x_{i}$$ and it seem use AM-GM inequality? $$\sum_{i=1}^{n}x_{i}\ge n\sqrt[n]{x_{1}x_{2}\cdots x_{n}}$$ $$\sum_{i=1}^{n}\dfrac{1}{x_{i}}\ge \dfrac{n}{\sqrt[n]{x_{1}x_{2}\cdots x_{n}}}$$ let $\sqrt[n]{x_{1}x_{2}\cdots x_{n}}=t$,since $$\Longleftrightarrow \left(\dfrac{t+1}{\frac{1}{t}+1}\right)^n\ge t^n$$But I can't it