Let $f$ be a polynomial defined on the Riemann sphere. I'm struggling to understand in what sense such a map can be said to be "holomorphic" at $\infty$. What is the derivative of $f$ at $\infty$?
I have a chart $z\to\frac1z$ mapping $\infty$ to $0$ and vice versa. So I think I need to work out the derivative of $1/f(\frac 1 z)$ at $z=0$. So:
$$\lim_{z\to 0} \frac {\frac{1}{f(\frac1z)}-\frac1{f(\frac 1 0)}} {z}=\lim_{z\to0}\frac{1}{zf(\frac 1 z)}$$
Expanding the polynomial $f$, we see that if $\deg f>1$, $zf(\frac 1 z)\to \infty$ as $z\to 0$, so the derivative of $f$ at infinity is $0$, but if $f$ is affine of leading coefficient $a$, the derivative will be $\frac 1 a$.
Is this correct? And what is the meaning of the calculation I've just done? In particular, does this result not depend on the choice of chart?