What is $\Pr\left( \sum_{i=1}^n X_i \le c \,\middle|\, \lambda = \lambda_0 \right) $ when $X_i \sim \text{Poisson}(\lambda)$?
Is it right to say $X_1+\dots+X_n\sim\text{Poisson}(n\lambda_0)$ then $\Pr\left( \sum_{i=1}^n X_i \le c \,\middle|\, \lambda = \lambda_0 \right)=\sum_{k=1}^cn^k\lambda_0^k\frac{e^{-n\lambda_0}}{k!}$?