The Question is,
Let $X$ and $Z$ be independent, with $X \sim N(0,1)$, and with $P(Z=1)=P(Z=-1)=1/2$. Let $Y=XZ$.
Prove that $X$ and $Y$ are not independent.
I approached like below to show $P(X \cap Y) \neq P(X)P(Y)$.
$P(X \cap Y)=P(X\in B, Y \in B)$ $=P(X \in B, Y \in B |Z=1)P(Z=1)+P(X \in B, Y\in B|Z=-1)P(Z=-1)$ $=P(X \in B)P(Z=1) + P(X \in B, -X \in B)P(Z=-1)$ $={1 \over 2}P(X \in B)+{1\over2}P(X \in B, -X \in B)$
But I don't know how to go further... Thanks for any help.