If n birds are sitting in circle, each pecks its left or right bird with equal probability.
What is the distribution of number of pecked birds?
Note at least $\frac{n}{2}$ birds get pecked, so it cannot be binomial.
Also note that analysis for number of unpecked birds is $\frac{n}{4}$ for $n > 2$, which is actually just a coincidence if you assume binomial. For $n=1$ and $n=2$ all birds are necessarily pecked.
Also if there are $5$ birds a,b,c,d,e in order, if c is not pecked then both a and e must be pecked, so treating them as independent events are also not correct.
The distribution looks like this for various values of $n$. (Divide by $2^n$ as to get probability)
1 {1 -> 2}
2 {2 -> 4}
3 {2 -> 6, 3 -> 2}
4 {2 -> 4, 3 -> 8, 4 -> 4}
5 {3 -> 10, 4 -> 20, 5 -> 2}
6 {4 -> 36, 5 -> 24, 6 -> 4}
7 {4 -> 14, 5 -> 70, 6 -> 42, 7 -> 2}
8 {4 -> 4, 5 -> 48, 6 -> 152, 7 -> 48, 8 -> 4}
9 {5 -> 18, 6 -> 168, 7 -> 252, 8 -> 72, 9 -> 2}
10 {6 -> 100, 7 -> 400, 8 -> 440, 9 -> 80, 10 -> 4}
11 {6 -> 22, 7 -> 330, 8 -> 924, 9 -> 660, 10 -> 110, 11 -> 2}
12 {6 -> 4, 7 -> 120, 8 -> 1020, 9 -> 1808, 10 -> 1020, 11 -> 120, 12 -> 4}
13 {7 -> 26, 8 -> 572, 9 -> 2574, 10 -> 3432, 11 -> 1430, 12 -> 156, 13 -> 2}
14 {8 -> 196, 9 -> 1960, 10 -> 6076, 11 -> 5936, 12 -> 2044, 13 -> 168, 14 -> 4}
15 {8 -> 30, 9 -> 910, 10 -> 6006, 11 -> 12870, 12 -> 10010, 13 -> 2730, 14 -> 210, 15 -> 2}
16 {8 -> 4, 9 -> 224, 10 -> 3696, 11 -> 15904, 12 -> 25880, 13 -> 15904, 14 -> 3696, 15 -> 224, 16 -> 4}
17 {9 -> 34, 10 -> 1360, 11 -> 12376, 12 -> 38896, 13 -> 48620, 14 -> 24752, 15 -> 4760, 16 -> 272, 17 -> 2}
18 {10 -> 324, 11 -> 6048, 12 -> 37296, 13 -> 87264, 14 -> 87768, 15 -> 36960, 16 -> 6192, 17 -> 288, 18 -> 4}
19 {10 -> 38, 11 -> 1938, 12 -> 23256, 13 -> 100776, 14 -> 184756, 15 -> 151164, 16 -> 54264, 17 -> 7752, 18 -> 342, 19 -> 2}
20 {10 -> 4, 11 -> 360, 12 -> 9780, 13 -> 77280, 14 -> 252360, 15 -> 369008, 16 -> 252360, 17 -> 77280, 18 -> 9780, 19 -> 360, 20 -> 4}
21 {11 -> 42, 12 -> 2660, 13 -> 40698, 14 -> 232560, 15 -> 587860, 16 -> 705432, 17 -> 406980, 18 -> 108528, 19 -> 11970, 20 -> 420, 21 -> 2}
22 {12 -> 484, 13 -> 14520, 14 -> 149556, 15 -> 638880, 16 -> 1294216, 17 -> 1292368, 18 -> 640200, 19 -> 148896, 20 -> 14740, 21 -> 440, 22 -> 4}
23 {12 -> 46, 13 -> 3542, 14 -> 67298, 15 -> 490314, 16 -> 1634380, 17 -> 2704156, 18 -> 2288132, 19 -> 980628, 20 -> 201894, 21 -> 17710, 22 -> 506, 23 -> 2}
24 {12 -> 4, 13 -> 528, 14 -> 21384, 15 -> 268752, 16 -> 1471932, 17 -> 3920928, 18 -> 5410160, 19 -> 3920928, 20 -> 1471932, 21 -> 268752, 22 -> 21384, 23 -> 528, 24 -> 4}
25 {13 -> 50, 14 -> 4600, 15 -> 106260, 16 -> 961400, 17 -> 4085950, 18 -> 8914800, 19 -> 10400600, 20 -> 6537520, 21 -> 2163150, 22 -> 354200, 23 -> 25300, 24 -> 600, 25 -> 2}
26 {14 -> 676, 15 -> 29744, 16 -> 461032, 17 -> 3123120, 18 -> 10626044, 19 -> 19311968, 20 -> 19318832, 21 -> 10620896, 22 -> 3125980, 23 -> 459888, 24 -> 30056, 25 -> 624, 26 -> 4}
27 {14 -> 54, 15 -> 5850, 16 -> 161460, 17 -> 1776060, 18 -> 9373650, 19 -> 26075790, 20 -> 40116600, 21 -> 34767720, 22 -> 16872570, 23 -> 4440150, 24 -> 592020, 25 -> 35100, 26 -> 702, 27 -> 2}
28 {14 -> 4, 15 -> 728, 16 -> 41132, 17 -> 752752, 18 -> 6218212, 19 -> 26242216, 20 -> 60849516, 21 -> 80226336, 22 -> 60849516, 23 -> 26242216, 24 -> 6218212, 25 -> 752752, 26 -> 41132, 27 -> 728, 28 -> 4}
29 {15 -> 58, 16 -> 7308, 17 -> 237510, 18 -> 3121560, 19 -> 20030010, 20 -> 69194580, 21 -> 135727830, 22 -> 155117520, 23 -> 103791870, 24 -> 40060020, 25 -> 8584290, 26 -> 950040, 27 -> 47502, 28 -> 812, 29 -> 2}