2
  1. $\;\bullet\;\neg(p\vee\neg p)$ --- assumption
  2. $\;\bullet\;\neg p\wedge\neg\neg p$ --- DM 1 (De Morgan Law)
  3. $\;\bullet\;\neg p$ --- $\wedge$ elim 2
  4. $\;\bullet\;\neg\neg p$ --- $\wedge$ elim 2
  5. $\;\bullet\;\bot$ --- $\bot$ intro 3,4
  6. $\;p\vee\neg p$ --- RAA 1 - 5
Pooria
  • 497

1 Answers1

2

Your proof is alright apart from the fact that you used DM1, which although is true in intuitionistic logic, is usually not a given (it is also not given in the natural deduction system you linked).

This is because DM2 is invalid in intuitionistic logic.

So, here's a proof using RAA but not DM1:

  01. ¬[p∨¬p]   assumption
    02. p       assumption
    03. p∨¬p    ∨intro 02
    04. ⊥       contradiction 03 01
  05. ¬p        ¬intro 02-04
  06. p∨¬p      ∨intro 05
  07. ⊥         contradiction 06 01
08. p∨¬p        RAA 01-07
Kenny Lau
  • 25,655
  • 33
  • 78