What are commonly-known equivalents of LEM among logicians, assuming intuitionistic axioms? I'll list a few to begin with. Below, $\varphi$ and $\psi$ denote arbitrary sentences.
- (DNE) Double negation elimination: $\neg \neg \varphi \vdash \varphi$
- (RAA) Reductio ad absurdum: $\neg \varphi \to \psi, \neg \varphi \to \neg \psi \vdash \varphi$
- (P) Peirce's Law: $\vdash ((\varphi \to \psi) \to \varphi) \to \varphi$
LEM → DNE
01. ¬¬φ premise
02. φ∨¬φ LEM
03. ¬φ assumption
04. ⊥ contradiction 03 01
05. φ explosion 04
06. ¬φ→φ →intro 03-05
07. φ assumption
08. φ→φ →intro 07-07
09. φ ∨elim 02 08 06
DNE → LEM
01. ¬[φ∨¬φ] assumption
02. φ assumption
03. φ∨¬φ ∨intro 02
04. ⊥ contradiction 03 01
05. ¬φ ¬intro 02-04
06. φ∨¬φ ∨intro 05
07. ⊥ contradiction 06 01
08. ¬¬[φ∨¬φ] ¬intro 01-07
09. φ∨¬φ DNE
LEM → RAA
01. ¬φ→ψ premise
02. ¬φ→¬ψ premise
03. φ∨¬φ LEM
04. ¬φ assumption
05. ψ MP 01 04
06. ¬ψ MP 02 04
07. ⊥ contradiction 05 06
08. φ explosion 07
09. ¬φ→φ →intro 04-08
10. φ assumption
11. φ→φ →intro 10-10
12. φ ∨elim 03 11 09
RAA → LEM
01. ¬[φ∨¬φ] assumption
02. φ assumption
03. φ∨¬φ ∨intro 02
04. ⊥ contradiction 03 01
05. ¬φ ¬intro 02-04
06. ¬[φ∨¬φ]→¬φ →intro 01-05
07. ¬[φ∨¬φ] assumption
08. ¬φ assumption
09. φ∨¬φ ∨intro 02
10. ⊥ contradiction 09 07
11. ¬¬φ ¬intro 08-10
12. ¬[φ∨¬φ]→¬¬φ →intro 07-11
13. φ∨¬φ RAA 06 12
LEM → P
01. [φ→ψ]→φ assumption
02. ¬φ assumption
03. φ assumption
04. ⊥ contradiction 03 02
05. ψ explosion 04
06. φ→ψ →intro 03-05
07 φ MP 01 06
09. ¬φ→φ →intro 02-07
10. φ assumption
11. φ→φ →intro 10-10
12. φ∨¬φ LEM
13. φ ∨elim 12 11 09
14. [[φ→ψ]→φ]→φ →intro 01-13
P → LEM
01. [[[φ∨¬φ]→⊥]→[φ∨¬φ]]→[φ∨¬φ] P
02. [[φ∨¬φ]→⊥] assumption
03. [φ∨¬φ] assumption
04. ⊥ MP 02 03
05. ¬[φ∨¬φ] ¬intro 03-04
06. φ assumption
07. φ∨¬φ ∨intro 06
08. ⊥ contradiction 07 05
09. ¬φ ¬intro 06-8
10. φ∨¬φ ∨intro 09
11. [[φ∨¬φ]→⊥]→[φ∨¬φ] →intro 02-10
12. φ∨¬φ MP 01 11