When you have only two independent variables, sometimes it's easier just to make a table.
Let $X$ be the event that it rains today and $Y$ be the event that it rains tomorrow. We are given that $P(X)=0.5$, $P(Y)=0.6$, and $P(\overline X \cap \overline Y)=0.3$:
$$
% outer array of arrays
\begin{array}{lr}
% inner 3x3 array in top left corner
\begin{array}{c|c|c|}
& Y & \overline Y \\
\hline
X & P(X \cap Y) & P(X \cap \overline Y) \\
\hline
\overline X & P(\overline X \cap Y) & P(\overline X \cap \overline Y)=0.3 \\
\hline
\end{array}
% inner 3x1 array in top right corner
\begin{array}{l}
\\
P(X)=0.5 \\
P(\overline X)
\end{array} \\
% inner 1x3 array in bottom left corner
\begin{array}{ccc}
\quad & P(Y)=0.6 & P(\overline Y) \\
\end{array}
\end{array}
$$
We know that $P(X)+P(\overline X)=1$ and likewise $P(Y)+P(\overline Y)=1$, so we can fill this in as follows:
$$
% outer array of arrays
\begin{array}{lr}
% inner 3x3 array in top left corner
\begin{array}{c|c|c|}
& Y & \overline Y \\
\hline
X & P(X \cap Y) & P(X \cap \overline Y) \\
\hline
\overline X & P(\overline X \cap Y) & P(\overline X \cap \overline Y)=0.3 \\
\hline
\end{array}
% inner 3x1 array in top right corner
\begin{array}{l}
\\
P(X)=0.5 \\
P(\overline X)\color{red}{=0.5}
\end{array} \\
% inner 1x3 array in bottom left corner
\begin{array}{ccc}
\quad & P(Y)=0.6 & P(\overline Y)\color{red}{=0.4} \\
\end{array}
\end{array}
$$
We know that the rows sum across and the columns sum down, so:
$$
% outer array of arrays
\begin{array}{lr}
% inner 3x3 array in top left corner
\begin{array}{c|c|c|}
& Y & \overline Y \\
\hline
X & P(X \cap Y) & P(X \cap \overline Y)\color{red}{=0.1} \\
\hline
\overline X & P(\overline X \cap Y)\color{red}{=0.2} & P(\overline X \cap \overline Y)=0.3 \\
\hline
\end{array}
% inner 3x1 array in top right corner
\begin{array}{l}
\\
P(X)=0.5 \\
P(\overline X)=0.5
\end{array} \\
% inner 1x3 array in bottom left corner
\begin{array}{ccc}
\quad & \,P(Y)=0.6 & \quad\quad\, P(\overline Y)=0.4 \\
\end{array}
\end{array}
$$
And finally:
$$
% outer array of arrays
\begin{array}{lr}
% inner 3x3 array in top left corner
\begin{array}{c|c|c|}
& Y & \overline Y \\
\hline
X & P(X \cap Y)\color{red}{=0.4} & P(X \cap \overline Y)=0.1 \\
\hline
\overline X & P(\overline X \cap Y)=0.2 & P(\overline X \cap \overline Y)=0.3 \\
\hline
\end{array}
% inner 3x1 array in top right corner
\begin{array}{l}
\\
P(X)=0.5 \\
P(\overline X)=0.5
\end{array} \\
% inner 1x3 array in bottom left corner
\begin{array}{ccc}
\quad & \,P(Y)=0.6 & \quad\quad\, P(\overline Y)=0.4 \\
\end{array}
\end{array}
$$