I want a $\epsilon-\delta$ proof for the continuity of $f(x)=x^n$ around a point $a$ on the domain of this function. Here's my sketch:
$$|f(x) - f(a)| = |x^n - a^n| = |x-a||x^{n-1} + x^{x-2}a +\dotsb + xa^{n-2} + a^{n-1}|$$
For every pair $x^{n - j}a^{j-1} + x^{j-1}a^{n-j}$ we can write as
\begin{multline} x^{j-1}a^{j-1}\bigl((x^{n-2j +1} - a^{n-2j+1}) + 2a^{n-2j+1} \bigl)\\ = x^{j-1}a^{j-1}\bigl((x - a)(x^{n-2j} + x^{n-2j -1}a +\dotsb + xa^{n-2j-1} + a^{n-2j}) + 2a^{n-2j+1} \bigl) \end{multline}
for every $j = 1,2,..., n$
Since $|x-a|<\delta$:
$$\bigl|x^{j-1}a^{j-1}\bigl((x - a)(x^{n-2j} + x^{n-2j -1}a +\dotsb + xa^{n-2j-1} + a^{n-2j}) + 2a^{n-2j+1} \bigl)| < |x^{j-1}a^{j-1}| \bigl( \delta (x^{n-2j} + x^{n-2j -1}a +\dotsb + xa^{n-2j-1} + a^{n-2j}) + |2a^{n-2j+1}| \bigl)$$
From now on I can't think of anything that would help me to conclude, I can't find any pattern that would help me summarize it, I would be glad if you help me.
Thanks.
$|x-a||x^{n-1} + x^{x-2}a +\dotsb + xa^{n-2} + a^{n-1}| < \delta |x^{n-1} + x^{x-2}a +\dotsb + xa^{n-2} + a^{n-1}|$
Doing $x->a$, we have
$\delta |na^{n-1}| < \epsilon$. Is that it? It's my first time studying analysis, I don't get the techniques yet...
– João Hiroyuki Jul 20 '17 at 14:53