I recently asked about proof that $x^2$ is continuous, and after the feedback I received, I decided to see if I learned correctly using another example: $f(x)=x^3$. I'm going to have some scratch work before the actual proof. Below, $c$ is an arbitrary constant and I want to prove that $f(x)=x^3$ is continuous at $x=c$ to show that $x^3$ is continuous everywhere. $x_0$ is an arbitrary point in $(c-\delta,c+\delta)$.
Scratch work (lots of algebra):
$0<|x_0-c|<\delta$
$|f(x_0)-f(c)|=\left|x_0^3-c^3\right|=|x_0-c|\left|x_0^2+cx_0+c^2\right|\le|x_0-c|\left(|x_0|^2+|cx_0|+\left|c^2\right|\right)$
side note:
If we let $\delta\le1$, then $|x_0-c|<1\Rightarrow|x_0|=|x_0-c+c|\le|x_0-c|+|c|<1+|c|$
$\Rightarrow|x_0|<1+|c|$
\end of side note
Picking up from the place before the side note, we have
$|x_0-c|\left(|x_0|^2+|cx_0|+\left|c^2\right|\right)<|x_0-c|\left(\left(1+|c|\right)^2+|c|(1+|c|)+\left|c^2\right|\right)$
$= |x_0-c|\left(1+2|c|+|c|^2+|c|+\left|c^2\right|+\left|c^2\right|\right)=|x_0-c|\left(3\left|c^2\right|+3|c|+1\right)$
So far we have $|x_0-c|\left(3\left|c^2\right|+3|c|+1\right)<\epsilon\Rightarrow|x_0-c|<\frac{\epsilon}{3\left|c^2\right|+3|c|+1}$
And we can have $\delta={\epsilon\over3\left|c^2\right|+3|c|+1}$
/end of scratch work
Proof:
If $0<|x_0-c|<\delta$ and $\delta\le1$ and $\delta={\epsilon\over3|c^2|+3|c|+1}$, then
$\left|x_0^3-c^3\right|=|x_0-c|\left|x_0^2+cx_0+c^2\right|\le|x_0-c|\left(\left|x\right|^2+|cx_0|+\left|c^2\right|\right)$
$<|x_0-c|\left(3\left|c^2\right|+3|c|+1\right)$
$<\delta*(3\left|c^2\right|+3|c|+1)=\frac{\epsilon}{3|c^2|+3|c|+1}\left(3\left|c^2\right|+3|c|+1\right)=\epsilon$
$\Rightarrow\left|x_0^3-c^3\right|<\epsilon$
Thus if $\delta=\min\left\{1,{\frac{\epsilon}{3\left|c^2\right|+3|c|+1}}\right\}$, then $\left|x_0^3-c^3\right|<\epsilon$, so $x^3$ is continuous, and we are done.
I appreciate your criticisms. If you spot any error(s), please let me know. Thanks!