Note that this question is similar but slightly different than this. If you believe the answer from that question could be applicable, please explain why it still works for a matrix that has been transposed
The matrix $A$ is defined as:
$V=\left(\begin{array}
& 1 & a_0 & a_0^2 & \cdots & a_0^{n-1}
\\ 1 & a_1 & a_1^2 & \cdots & a_1^{n-1}
\\ \vdots & \vdots & \ddots & \vdots & \vdots
\\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1}
\\\end{array}.\right)$
Such that $a_0,a_1,..,a_{n-1}\in \mathbb{C}$
Prove that:
$|V(a_0,...,a_{n-1})|=\Pi_{0\leq i<j<n-1}(a_j-a_i)$
For example:
$V(3,2,4)=\left( \begin{array} &1&3&9 \\ 1&2&4 \\ 1&4&16 \end{array} \right)$ such that: $\begin{vmatrix} 1&3&9 \\ 1&2&4 \\ 1&4&16 \end{vmatrix}=(4-2)(4-3)(2-3)$
Use the following steps in your proof:
-$C_n-a_0C_{n-1}\rightarrow C_n$
-$C_{n-1}-a_0C_{n-2}\rightarrow C_{n-1}$
-Until $C_2-a_0C_1\rightarrow C_2$
-Use induction/recursion to arrive at a solution