Here's an elaboration of the idea I suggested in my comments above, in the form of a proof of the following result:
- Let $\ (\Omega,\scr{F},\mathbb{P})\ $ be a probability space, $\ X:\Omega\rightarrow L^2([0,1],\mathbb{C})\ $ a function which is measurable (with respect to the Borel sets of $\ L^2([0,1],\mathbb{C})\ $ and the $\ \sigma$-algebra $\ \scr{F}\ $), and for which
$$
\infty>E\big(\|X\|_2\big)=\int_\Omega\|X(\omega)\|_2\,d\mathbb{P}(\omega)\ .
$$
Then there is a measurable function $\ \varphi:[0,1]\times\Omega\rightarrow\mathbb{C}\ $, such that
$\ \varphi(\,.,\omega)=X(\omega)\ $, for $\ \mathbb{P}\text{-a.e. }\omega\in\Omega\ $. Thus, if we define $\ \psi:[0,1]\rightarrow\mathbb{C}^\Omega\ $ by
$$
\psi(t)(\omega)=\phi(t,\omega)\ ,
$$
then $\ \psi\ $ is a stochastic process such that $\ \psi(.)(\omega)=X(
\omega)\ $ for $\ \mathbb{P}\text{-a.e. }\omega\in\Omega\ $.
Here, I will take symbols of the form $\ f(\,.),\, g(\,.,.)\ $ etc. to represent the equivalence classes of functions which are almost everywhere equal to $\ f, g\ $ etc. .
Here's the proof:
First note that $\ L^2([0,1],\mathbb{C})\subseteq L^1([0,1],\mathbb{C})\ $ and $\ \|f\|_1\le\|f\|_2\ $ for all $\ f\in L^2([0,1],\mathbb{C})\ $ (see this post by Ayman Hourieh, for example). Also, since $\ [0,1]\ $ is separable, then so is $\ L^1([0,1],\mathbb{C})\ $. Let $\ \{x_j\,|\,j\in\mathbb{N}\,\}\ $ be a countable dense subset of $\ L^1([0,1],\mathbb{C})\ $,
$$
B(f,d\,)\stackrel{\text{def}}{=}\left\{
\left. g\in L^1([0,1],\mathbb{C})\,\right|\|g-f\|_ 1<d\right\}
$$
(the open ball of $\ L^1([0,1],\mathbb{C})\ $ with centre $\ f\ $ and radius $\ d\ $), and for each $\ r\in\mathbb{N}\ $ let
\begin{align}
P_1(r)&=B\big(x_1,r^{-1}\big)\\
P_{j+1}(r)&=B\big(x_{j+1},r^{-1}\big)\setminus\bigcup_{i=1}^jP_i(r)\ \text{ for }\ j=1,2,\dots\ .
\end{align}
If $\ x\in L^1([0,1],\mathbb{C})\ $ and $\ r\in\mathbb{N}\ $, then since $\ \{x_j\,|\,j\in\mathbb{N}\,\}\ $ is dense in $\ L^1([0,1],\mathbb{C})\ $, there exists $\ j\in \mathbb{N}\ $ such that $\ \|x-x_j\|_1\le r^{-1}\ $—that is $\ x\in B\big(x_j,r^{-1}\big)\ $.
Therefore, for every $\ r\ $, $\ L^1([0,1],\mathbb{C})\subseteq\bigcup_\limits{j=1}^\infty B\big(x_j,r^{-1}\big)\ $, $\ \big\{P_j(r)\,|\,j\in\mathbb{N}\big\}\ $ is a partition of $\ L^1([0,1],\mathbb{C})\ $, and
$$
\big\{X^{-1}\big(P_j(r)\big)\,\big|\,j\in\mathbb{N}\big\}\subseteq\mathscr{F}
$$
is a partition of $\ \Omega\ $. For each $\ i\in\mathbb{N}\ $, let $\ \hat{x}_i:[0,1]\rightarrow\mathbb{C}\ $ be any measurable representative of the equivalence class $\ x_i\ $ (that is, $\ \hat{x}_i(\,.)=x_i\ $), and for each $\ r\in\mathbb{N}\ $ and $\ \omega\in\Omega\ $, let $\ i_r(\omega)\ $ be the (unique) value of $\ i\ $ such that $\ \omega\in X^{-1}\big(P_i(r)\big)\ $. Now let
$$
z_r(t,\omega)=\hat{x}_{i_r(\omega)}(t)
$$
for $\ r\in\mathbb{N},t\in[0,1]\ $ and $\ \omega\in\Omega\ $. For all $\ \omega\ $ and $\ r\ $, we have $\ X(\omega)\in P_{i_r(\omega)}(r)\subseteq B\big( z_r(\,.,\omega),r^{-1}\big)\ $, so
$$
\|\,X(\omega)-z_r(\,.,\omega)\,\|_1\le\frac{1}{r}\ .
$$
Also, if $\ S\ $ is any measurable subset of $\ \mathbb{C}\ $, then
\begin{align}
(t,\omega)\in z_r^{-1}(S)&\Rightarrow \hat{x}_{i_r(\omega)}(t)=z_r(t,\omega)\in S\\
&\hspace{1.5em}\text{and }\ X(\omega)\in P_{i_r(\omega)}(r)\\
&\Rightarrow(t,\omega)\in\hat{x}^{-1}_{i_r(\omega)}(S)\times X^{-1}\big(P_{i_r(\omega)}(r)\big)\\
&\Rightarrow(t,\omega)\in\bigcup_{i=1}^\infty\left(\hat{x}_i^{-1}(S)\times X^{-1}\big(P_i(r)\big)\right)\ .
\end{align}
Therefore,
$$
z_r^{-1}(S)\subseteq\bigcup_{i=1}^\infty\left(\hat{x}_i^{-1}(S)\times X^{-1}\big(P_i(r)\big)\right)\ .
$$
Conversely, if $\ (t,\omega)\in\bigcup_\limits{i=1}^\infty\left(\hat{x}_i^{-1}(S)\times X^{-1}\big(P_i(r)\big)\right)\ $, then
$\ (t,\omega)\in\hat{x}_i^{-1}(S)\times X^{-1}\big(P_i(r)\big)\ $ for some natural number $\ i\ $. But $\ \omega\in X^{-1}\big(P_i(r)\big)\Rightarrow$$\,i=i_r(\omega)\ $, because $\ i_r(\omega)\ $ is the unique value of $\ i\ $ for which $\
\omega\in X^{-1}\big(P_i(r)\big)\ $. Therefore,
$$
(t,\omega)\in\hat{x}^{-1}_{i_r(\omega)}(S)\times X^{-1}\big(P_{i_r(\omega)}(r)\big)\ ,
$$
and, in particular, $\ t\in\hat{x}^{-1}_{i_r(\omega)}(S)\ $, from which it follows that $\ z_r(t,\omega)=\hat{x}_{i_r(\omega)}(t)\in S\ $, or, equivalently, $\ (t,\omega)\in z_r^{-1}(S)\ $. Hence we have the reverse inclusion
$$
\bigcup_{i=1}^\infty\left(\hat{x}_i^{-1}(S)\times X^{-1}\big(P_i(r)\big)\right)\subseteq z_r^{-1}(S)\ ,
$$
and therefore
$$
z_r^{-1}(S)=\bigcup_{i=1}^\infty\left(\hat{x}_i^{-1}(S)\times X^{-1}\big(P_i(r)\big)\right)\ .
$$
Thus $\ z_r:[0,1]\times \Omega\rightarrow\mathbb{C}\ $ is measurable.
Also, for all $\ \omega\in\Omega\ $,
$$
\|z_r(.,\omega)\|_1\le\|X(\omega)\|_1+\frac{1}{r}\ ,
$$
and therefore
\begin{align}
\int_\Omega\int_0^1|z_r(t,\omega)|\ dt\ d\mathbb{P}(\omega)&=\int_\Omega\|z_r(
\,.,\omega)\|_1\,d\mathbb{P}(\omega)\\
&\le\frac{1}{r}+\int_\Omega\|X(\omega)\|_1\,d\mathbb{P}(\omega)\\
&<\infty\ .
\end{align}
Thus $\ z_r(\,.,.)\in L^1([0,1]\times\Omega)\ $.
Now for every $\ r,n\in\mathbb{N}\ $ we have
\begin{align}
\|\,\,z_r(\,.,\omega)-z_n(\,.,\omega)\,\|_1&\le\|\,X(\omega)-z_r(\,.,\omega)\,\|_1+\|\,X(\omega)-z_n(
.,\omega)\,\|_1\\
&\le\frac{1}{r}+\frac{1}{n}\\
&\le\frac{2}{\min(r,n)}\ .
\end{align}
Therefore,
\begin{align}
\int_\Omega\int_0^1|z_r(t,\omega)-z_n(t,\omega)|dt\,d\mathbb{P}(\omega)
&=\int_\Omega\|\,\,z_r(\,.,\omega)-z_n(\,
.,\omega)\,\|_1\,d\mathbb{P}(\omega)\\
&\le\frac{1}{r}+\frac{1}{n}\ ,
\end{align}
and $\ \big\{z_r(\,.,
,.)\big\}_{r=1}^\infty\ $ is thus a Cauchy sequence of $\ L^1([0,1]\times\Omega)\ $. It must therefore converge to some element $\ z\ $ of $\ L^1([0,1]\times\Omega)\ $. Let $\ \varphi:[0,1]\times\Omega\rightarrow\mathbb{C}\ $ be any measurable representative from the equivalence class $\ z\ $. For each $\ r\in\mathbb{N}\ $ let
$$
M_r=\left\{\,\omega\in\Omega\,\left|\,\|X(\omega)-
\varphi(\,.,\omega)\|_1\ge\frac{4}{r}\,\right.\right\}\ .
$$
Then
$$
\left\{\,\omega\in\Omega\,\left|\,X(\omega)\ne
\varphi(\,.,\omega)\right.\right\}=\bigcup_{r=1}^\infty M_r\ .
$$
But, for all $\ s\ge r\ $ and all $\ \omega\in M_r\ $,
\begin{align}
\|\varphi(\ .,\omega)-z_s(\omega,.)\,\|_1&\ge\|\,\varphi(\,.,\omega)-z_r(\,.,\omega)\,\|_1-\|z_r(\,.,\omega)-z_s(\,.,\omega)\|_1\\
&\ge\|\,\varphi(\,.,\omega)-z_r(\,.,\omega)\,\|_1-\frac{2}{r}\\
&\ge\|X(\omega)-\varphi(\,.,\omega)\|_1-\|X(\omega)-z_r(\,.,\omega)\|_1-\frac{2}{r}\\
&\ge\|X(\omega)-\varphi(\,.,\omega)\|_1-\frac{3}{r}\\
&\ge\frac{1}{r}\ ,
\end{align}
so $\ M_r\subseteq\bigcap_\limits{s=r}^\infty\big\{\omega\in\Omega\,\big|\|\,\varphi(\ .,\omega)-z_s(\omega,.)\,\|_1\ge\frac{1}{r}\big\}\ $. Let $$
Q_s(r)=\big\{\omega\in\Omega\,\big|\|\,\varphi(\ .,\omega)-z_s(\omega,.)\,\|_1\ge\frac{1}{r}\big\}\ $$
and
$$
T_r=\bigcap_\limits{s=r}^\infty Q_s(r)
$$
Since $\ z_n\rightarrow\varphi(\,.,.)\ $, then, for any $\ r\in\mathbb{N}\ $ and $\ \epsilon>0\ $, there exists an $\ n\ge r\ $ such that $\ \|\varphi(\,.,.)-z_n(\,.,.)\|_1\le\frac{\epsilon}{r}\ $, and we have
\begin{align}
\frac{\epsilon}{r}&\ge\|\varphi(\,.,.)-z_n(\,.,.)\|_1\\
&=\int_\Omega\|\varphi(\,.,\omega)-z_n(\omega,.)\|_1\,d\mathbb{P}(\omega)\\
&\ge\int_{Q_n(r)}\|\varphi(\,.,\omega)-z_n(\omega,.)\|_1\,d\mathbb{P}(\omega)\\
&\ge\frac{\mathbb{P}\big(Q_n(r)\big)}{r}\\
&\ge\frac{\mathbb{P}\big(T_r\big)}{r}\ ,
\end{align}
from which it follows that $\ \mathbb{P}\big(T_r\big)\le\epsilon\ $. Since this holds for all $\ r\ $ and all $\ \epsilon>0\ $, then $\ \mathbb{P}\big(T_r\big)=0\ $ for all $\ r\ $, and hence $\ \mathbb{P}\left(\bigcup_\limits{r=1}^\infty T_r\right)=0\ $. Now since
$$
\left\{\,\omega\in\Omega\,\left|\,X(\omega)\ne
\varphi(\,.,\omega)\right.\right\}=\bigcup_{r=1}^\infty M_r\subseteq\bigcup_{r=1}^\infty T_r\ ,
$$
we have $\ \varphi(\,.,\omega)=X(\omega)\ $, for $\ \mathbb{P}\text{-a.e. }\omega\in\Omega\ $. This concludes the proof of the result.