I was wondering if anyone knew of any positive integer solutions to this Diophantine equation, or had a proof there are none. Integer solutions exist with negative values, such as (11,9,-5) and (4,11,-1), but checking positive integers up through 10,000 yielded nothing and I don't see a way to show there are none.
Asked
Active
Viewed 385 times
1 Answers
0
Yes, there are BIG positive solutions. For example:
x:=16666476865438449865846131095313531540647604679654766832109616387367203990642764342248100534807579493874453954854925352739900051220936419971671875594417036870073291371;
y:=184386514670723295219914666691038096275031765336404340516686430257803895506237580602582859039981257570380161221662398153794290821569045182385603418867509209632768359835;
z:=32343421153825592353880655285224263330451946573450847101645239147091638517651250940206853612606768544181415355352136077327300271806129063833025389772729796460799697289;
See Oleg567's answer here: Find integer in the form: $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$
Robert Z
- 147,345
$$(x+y+z)\left(\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{x+y}\right)=7$$ Not sure if that helps.
– Thomas Andrews May 23 '17 at 14:14