I found a few solutions $(a,b,c)$ of equatoin
$$
\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=n \qquad\qquad (a,b,c,n\in\mathbb{N})\tag{1}
$$
for even $n$.
And I have a doubt whether there are smaller solutions.
$\color{#FF4400}{n=4:}$
$\small
a=4373612677928697257861252602371390152816537558161613618621437993378423467772036$;
$\small b=36875131794129999827197811565225474825492979968971970996283137471637224634055579$;
$\small c=154476802108746166441951315019919837485664325669565431700026634898253202035277999$.
This solution is much smaller, but is still big:
$\log_2 (a+b+c) \approx 266.723$,
$\log_{10} (a+b+c) \approx 80.2916$.
Other solutions for $n=4$:
a=16666476865438449865846131095313531540647604679654766832109616387367203990642764342248100534807579493874453954854925352739900051220936419971671875594417036870073291371;
b=184386514670723295219914666691038096275031765336404340516686430257803895506237580602582859039981257570380161221662398153794290821569045182385603418867509209632768359835;
c=32343421153825592353880655285224263330451946573450847101645239147091638517651250940206853612606768544181415355352136077327300271806129063833025389772729796460799697289;
$\log_2(a+b+c)\approx 555.985$;
$\log_{10}(a+b+c) \approx 167.368$.
a=1054210182683112310528012408530531909717229064191793536540847847817849001214642792626066010344383473173101972948978951703027097154519698536728956323881063669558925110120619283730835864056709609662983759100063333396875182094245046315497525532634764115913236450532733839386139526489824351;
b=1440354387400113353318275132419054375891245413681864837390427511212805748408072838847944629793120889446685643108530381465382074956451566809039119353657601240377236701038904980199109550001860607309184336719930229935342817546146083848277758428344831968440238907935894338978800768226766379;
c=9391500403903773267688655787670246245493629218171544262747638036518222364768797479813561509116827252710188014736501391120827705790025300419608858224262849244058466770043809014864245428958116544162335497194996709759345801074510016208346248254582570123358164225821298549533282498545808644;
$\log_2(a+b+c)\approx 950.321$;
$\log_{10}(a+b+c)\approx 286.075$.
$\color{#FF4400}{n=6:}$
a=1218343242702905855792264237868803223073090298310121297526752830558323845503910071851999217959704024280699759290559009162035102974023;
b=2250324022012683866886426461942494811141200084921223218461967377588564477616220767789632257358521952443049813799712386367623925971447;
c=20260869859883222379931520298326390700152988332214525711323500132179943287700005601210288797153868533207131302477269470450828233936557.
$\log_2 (a+b+c) \approx 443.063$;
$\log_{10} (a+b+c) \approx 133.375$.
$\color{#FF4400}{n=10:}$
a=221855981602380704196804518854316541759883857932028285581812549404634844243737502744011549757448453135493556098964216532950604590733853450272184987603430882682754171300742698179931849310347;
b=269103113846520710198086599018316928810831097261381335767926880507079911347095440987749703663156874995907158014866846058485318408629957749519665987782327830143454337518378955846463785600977;
c=4862378745380642626737318101484977637219057323564658907686653339599714454790559130946320953938197181210525554039710122136086190642013402927952831079021210585653078786813279351784906397934209.
$\log_2(a+b+c) \approx 630.265$;
$\log_{10}(a+b+c) \approx 189.729$.
Instead of $a,b,c \in \mathbb{N}$, we can consider positive rational numbers $p,q,r$:
$$
p = \dfrac{a}{a+b+c}, \qquad q = \dfrac{b}{a+b+c}, \qquad r = \dfrac{c}{a+b+c} = 1-p-q.
$$
So, we'll search rational solutions of equation
$$
\dfrac{p}{1-p}+\dfrac{q}{1-q}+\dfrac{1-p-q}{2p} = n, \qquad (n\in \mathbb{N}), \tag{2}
$$
like (eq.1) in Hecke's answer.
Denote $p=m-d$, $\quad$ $q=m+d$. $\quad$ $\quad$ $(2) \rightarrow (3)$:
$$
\dfrac{m-d}{(1-m)-d} + \dfrac{m+d}{(1-m)+d} + \dfrac{1-2m}{2m} = n, \tag{3}
$$
then $(3) \rightarrow (4)$:
$$
\Bigl((2n+6)m-1\Bigr)d^2 = (2n+6)m^3 - (4n+9)m^2+(2n+4)m-1. \tag{4}
$$
Denote
$m = \dfrac{x-1}{(2n+6)x}$, $d = \dfrac{y}{(2n+6)x}$. Then we get equation:
$$
y^2 = 1 + (4n+6)x + (2n+3)^2x^2 + (8n+20)x^3, \qquad n \in \mathbb{N}; \tag{5}
$$
$$
y^2 = \Bigl( 1 + (2n+5)x \Bigr) \Bigl(1 + (2n+1)x + 4x^2 \Bigr), \qquad n \in \mathbb{N}.
$$
We need to find rational solutions $(x,y)$ of equation $(5)$, which give $ |d| <m<0.5$.
If $n=4$, then we consider rational points on elliptic curve $y^2=1 + 22 x + 121 x^2 + 52 x^3$.
Starting rational points on this EC:
points, where $x$ is $-2, 0, 1, \dfrac{-1}{4}, \dfrac{-5}{9}, \dfrac{-15}{13}, \dfrac{-2}{13}, \dfrac{-1}{13}, \dfrac{-3}{25}, \dfrac{168}{25}, \dfrac{611}{121}, \ldots$ .
We need to find/construct one with $x \in (-2.13278;-2.08649) \bigcup (-0.22120;-0.16667)$.
If $n=6$, then we consider rational points on elliptic curve $y^2=1 + 30 x + 225 x^2 + 68 x^3$,
where
$x \in (-3.17116;-3.14447) \bigcup (-0.14965;-0.125)$.
If we'll find appropriate $(x,y)$, then
$$
p = \dfrac{x-y-1}{(2n+6)x}, \qquad
q = \dfrac{x+y-1}{(2n+6)x}, \qquad
r = \dfrac{(2n+4)x+2}{(2n+6)x}.
$$
It seems, that if $n$ is odd, then there are only 5 rational points on corresponding EC, and there is no integer solution $(a,b,c)$ of equation $(1)$.
In the most cases of even $n$ $(n=2,4,6,10,12,14,...)$ there are many rational points on corresponding EC.
- \frac{b}{c+a} + \frac{c} {a+b} \ge 3$.
– Inceptio May 26 '13 at 12:48